簡易檢索 / 詳目顯示

研究生: 沈資浩
Shen, Tzu-Hao
論文名稱: 製備高排列性銀奈米十四面體Langmuir-Blodgett膜作為表面基質輔助游離/脫附質譜之高效能樣品基板
Highly Oriented Langmuir-Blodgett Film of Silver Cuboctahedra as an Effective Matrix-Free Sample Plate in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 銀奈米晶體SALDI-MSLangmuir-Blodgett(LB)膜
英文關鍵詞: Silver Nanocrystals, SALDI-MS, Langmuir-Blodgett film
DOI URL: https://doi.org/10.6345/NTNU202202115
論文種類: 學術論文
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過製備高排列性銀奈米晶體樣品基板的設計來解決在表面輔助游離/脫附質譜最佳加熱點的問題,同時也是擴大應用性的關鍵所在。在本篇論文中,我們使用形狀均勻的銀奈米晶體作為大規模且高排列Langmuir-Blodgett(LB)膜的材料,且將其應用在SALDI-MS中做為無需基質的高效能樣品基板,主要使用的材料有三種不同形狀的銀奈米晶體如正立方體,十四面體,以及八面體做成的LB膜來做為SALDI-MS中檢測葡萄糖的樣品基板。
    由結果與一般使用的CHCA和DHB基質相比較之下,使用銀奈米晶體做成的LB膜樣品版其訊號強度,雜訊訊號比,背景雜訊,以及再現性都得到顯著的提高。在這之中特別的是,當使用銀奈米十四面體做成的LB膜可以獲得5.7%的相對訊號。歸功於雷射照射能量的均勻分散使得我們在SALDI-MS測量中獲得非常好的改進,以及在高排列性銀十四面體LB膜下產生了大面積的最佳加熱區域,這種可以立即使用的樣品基板在SALDI-MS中已經顯示出了很大的商業應用機會。

    The design of a homogeneous sample plate to solve the sweet heating spot issues is the key step to expand the applicability in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Here, large-scale and highly oriented Langmuir-Blodgett (LB) films of uniform-shaped silver nanocrystals have been fabricated as a highly efficient and matrix-free sample plate in SALDI MS. Three individual silver nanocrystals such as cube, cuboctahedron and octahedron assembled LB films have been applied as the sample plates for glucose detections in SALDI-MS without additional matrix. The results show that the signal intensity, background noise, signal-to-noise ratio and reproducibility have been significantly improved by using the LB films as the sample plate in comparison with commercial matrixes of CHCA and DHB. In particular, the relative signal of 5.7% has been obtained when the LB film of silver cuboctahedron has been applied. The great improvement in the SALDI-MS measurement could be attributed to homogenous dissipation of the laser irradiation energy to create a large area of the sweet heating spot on well-oriented silver cuboctahedron LB film. This ready-to-use sample plate has revealed great commercial applications in SALDI-MS.

    目錄 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 表面輔助雷射脫附/電離質譜(SALDI-MS) 1 1-2奈米科技的起源與發展 4 1-3奈米材料的簡介 7 1-3-2奈米材料的性質 13 1-4 奈米材料的應用 20 1-5 金屬奈米材料與侷域化表面電漿共振現象 24 第二章文獻回顧與研究動機 27 2-1 銀奈米晶體 27 2-3研究動機 41 第三章實驗步驟與設備 42 3-1實驗藥品 42 3-2實驗儀器設備及其原理 43 3-3實驗步驟 50 第四章 結果與討論 56 4-1銀奈米晶體的結構特性 56 4-2銀奈米晶體的LB膜製備 58 4-3 SALDI-MS測量 60 4-4用於SALDI-MS的銀奈米晶體LB膜樣品基板 61 第五章 結論與未來展望 63 參考文獻 64   圖目錄 圖1-1 奈米科技及其應用[47] 6 圖1-2 奈米材料的製程 7 圖1-3 奈米材料的製程 8 圖1-4 奈米材料的製備方法 13 圖1-4 奈米材料的自潔作用 21 圖1-5 侷域化表面電漿共振現象 25 圖2-1 不同形狀的銀奈米晶體 27 圖2-2 銀奈米晶體的合成機制 28 圖2-3 不同形狀銀奈米晶體的紫外光/可見光吸收光譜 29 圖2-4 銀奈米晶體規則排列的反射光譜以及均勻分散於溶液的消光光譜 30 圖2-5 不同密集程度之銀奈米晶體排列的散射光譜 31 圖2-6 不同形狀銀奈米晶體排列LB膜 32 圖2-7 表面張力隨時間變化圖 32 圖2-8 不同表面張力下銀奈米巨觀變化圖[33] 33 圖2-9 奈米花瓣用以檢測之流程 35 圖2-10 奈米花瓣SEM圖及XRD圖 35 圖2-11 在不同條件下以流式細胞術檢測癌細胞與奈米花瓣結合狀況 36 圖2-12 不同情況下癌細胞的共聚焦顯微鏡圖 37 圖2-13 CEM細胞裂解物的奈米花瓣的LDI-MS 38 圖2-14 細胞裂解物和sgc8共軛奈米花瓣的LDI-MS 39 圖3-1 高速離心機 43 圖3-2 紫外光/可見光/近紅外光光譜儀 44 圖3-3 光譜儀之偵測原理 45 圖3-4 穿透式電子顯微鏡 46 圖3-5 掃描式電子顯微鏡 47 圖3-7 製備單分子膜流程 49 圖3-6 分子膜製備機 49 圖3-8 合成銀奈米立方體之藥品製備 50 圖3-9 銀奈米立方體合成步驟 51 圖3-10 合成銀奈米十四面體之藥品製備 51 圖3-11 銀奈米十四面體合成步驟 52 圖3-12 銀奈米八面體之藥品製備 53 圖3-13 銀奈米八面體合成步驟 54 圖3-14 銀奈米晶體純化之藥品製備 54 圖3-15 銀奈米晶體之純化流程 55 圖4-1 (A)銀奈米立方體 (B)銀奈米十四面體 (C)銀奈米八面體之穿透式電子顯微鏡圖;(D)銀奈米立方體 (E)銀奈米十四面體 (F)銀奈米八面體LB膜之掃描式電子顯微鏡圖 57 圖4-2 (a)銀奈米立方體 (b)銀奈米十四面體 (c)銀奈米八面體之紫外光-可見光吸收光譜 58 圖4-3 表面張力與時間變化圖 59 圖4-4 不同形狀之銀奈米晶體測量葡萄糖比較圖 61 圖4-5 以CHCA和DHB做為輔助基質檢測葡萄糖,研究其在SALDI-MS的表現 62 圖4-6 以銀十四面體LB膜檢測葡萄糖之相對訊號 62   表目錄 表3-1 實驗藥品 42

    [1] H. W. Tang, K. M. Ng, W. Lu, C. M. Che, Anal. Chem. 2009, 81, 4720.
    [2] C.-K. Chiang, W.-T. Chen, H.-T. Chang, Chem. Soc. Rev. 2011, 40, 1269.
    [3] I. Ocsoy, B. Gulbakan, M. I. Shukoor, X. L. Xiong, T. Chen, D. H. Powell, W. H. Tan, Acs Nano 2013, 7, 417.
    [4] T. Yonezawa, H. Tsukamoto, S. Hayashi, Y. Myojin, H. Kawasaki, R. Arakawa, Analyst 2013, 138, 995.
    [5] J.-I. Kim, J.-M. Park, S.-J. Hwang, M.-J. Kang, J.-C. Pyun, Anal. Chim. Acta 2014, 836, 53.
    [6] H.-Z. Lai, S.-G. Wang, C.-Y. Wu, Y.-C. Chen, Anal. Chem. 2015, 87, 2114.
    [7] L. Sundar, F. Rowell, Anal. Methods 2015, 7, 3757.
    [8] J. Sunner, E. Dratz, Y. C. Chen, Anal. Chem. 1995, 67, 4335.
    [9] T. Watanabe, H. Kawasaki, T. Yonezawa, R. Arakawa, J. Mass Spectrom. 2008, 43, 1063.
    [10] R. Arakawa, H. Kawasaki, Anal. Sci. 2010, 26, 1229.
    [11] S. Nitta, H. Kawasaki, T. Suganuma, Y. Shigeri, R. Arakawa, J. Phys. Chem. C 2013, 117, 238.
    [12] T.-C. Chiu, L.-C. Chang, C.-K. Chiang, H.-T. Chang, J. Am. Soc. Mass. Spectrom. 2008, 19, 1343.
    [13] K. Shrivas, H.-F. Wu, Rapid Commun. Mass Spectrom. 2008, 22, 2863.
    [14] M.-T. Wang, M.-H. Liu, C. R. C. Wang, S. Y. Chang, J. Am. Soc. Mass. Spectrom. 2009, 20, 1925.
    [15] H. Yan, N. Xu, W.-Y. Huang, H.-M. Han, S.-J. Xiao, Int. J. Mass spectrom. 2009, 281, 1.
    [16] T.-R. Kuo, J.-S. Chen, Y.-C. Chiu, C.-Y. Tsai, C.-C. Hu, C.-C. Chen, Anal. Chim. Acta 2011, 699, 81.
    [17] S. K. Kailasa, H.-F. Wu, Microchim. Acta 2013, 180, 405.
    [18] X. Wen, S. Dagan, V. H. Wysocki, Anal. Chem. 2007, 79, 434.
    [19] G. Gedda, S. Pandey, M. L. Bhaisare, H.-F. Wu, RSC Adv. 2014, 4, 38027.
    [20] B. N. Y. Vanderpuije, G. Han, V. M. Rotello, R. W. Vachet, Anal. Chem. 2006, 78, 5491.
    [21] E. T. Castellana, D. H. Russell, Nano Lett. 2007, 7, 3023.
    [22] H. P. Wu, C. L. Su, H. C. Chang, W. L. Tseng, Anal. Chem. 2007, 79, 6215.
    [23] R. C. Gamez, E. T. Castellana, D. H. Russell, Langmuir 2013, 29, 6502.
    [24] Y.-K. Kim, D.-H. Min, ACS Appl. Mater. Interfaces 2012, 4, 2088.
    [25] L. Colaianni, S. C. Kung, D. K. Taggart, R. A. Picca, J. Greaves, R. M. Penner, N. Cioffi, Anal. Bioanal. Chem. 2014, 406, 4571.
    [26] C.-P. Fu, S. Lirio, W.-L. Liu, C.-H. Lin, H.-Y. Huang, Anal. Chim. Acta 2015, 888, 103.
    [27] A. Sangsuwan, B. Narupai, P. Sae-ung, S. Rodtamai, N. Rodthongkum, V. P. Hoven, Anal. Chem. 2015, 87, 10738.
    [28] M. Hong, L. Xu, F. Wang, Z. Geng, H. Li, H. Wang, C.-z. Li, Analyst 2016, 141, 2712.
    [29] T.-R. Kuo, D.-Y. Wang, Y.-C. Chiu, Y.-C. Yeh, W.-T. Chen, C.-H. Chen, C.-W. Chen, H.-C. Chang, C.-C. Hu, C.-C. Chen, Anal. Chim. Acta 2014, 809, 97.
    [30] S. S. Hinman, C.-Y. Chen, J. Duan, Q. Cheng, Nanoscale 2016, 8, 1665.
    [31] G. Lee, S.-E. Bae, S. Huh, S. Cha, RSC Adv. 2015, 5, 56455.
    [32] R. Liu, J.-f. Liu, X.-x. Zhou, G.-b. Jiang, Anal. Chem. 2011, 83, 3668.
    [33] A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol. 2007, 2, 435.
    [34] A. R. Tao, J. Huang, P. Yang, Acc. Chem. Res. 2008, 41, 1662.
    [35] Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotechnol. 2010, 5, 15.
    [36] N. J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Chem. Rev. 2011, 111, 3913.
    [37] G. G. Roberts, Adv. Phys. 1985, 34, 475.
    [38] E. Meyer, L. Howald, R. M. Overney, H. Heinzelmann, J. Frommer, H. J. Guntherodt, T. Wagner, H. Schier, S. Roth, Nature 1991, 349, 398.
    [39] G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, C. R. Brown, Nature 1992, 357, 393.
    [40] D. K. Schwartz, J. Garnaes, R. Viswanathan, J. A. N. Zasadzinski, Science 1992, 257, 508.
    [41] L. F. Chi, M. Anders, H. Fuchs, R. R. Johnston, H. Ringsdorf, Science 1993, 259, 213.
    [42] J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, D. K. Schwartz, Science 1994, 263, 1726.
    [43] S. Paul, C. Pearson, A. Molloy, M. A. Cousins, M. Green, S. Kolliopoulou, P. Dimitrakis, P. Normand, D. Tsoukalas, M. C. Petty, Nano Lett. 2003, 3, 533.
    [44] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Nat. Nanotechnol. 2008, 3, 538.
    [45] L. Wang, Y. Li, Q. Wang, L. Zou, B. Ye, Sens. Actuator B-Chem. 2016, 228, 214.
    [46] A. de Barros, M. Ferreira, C. J. Leopoldo Constantino, J. R. Ribeiro Bortoleto, M. Ferreira, ACS Appl. Mater. Interfaces 2015, 7, 6828.
    [47] 科技創意產業發展, 楊啟榮, 台灣師範大學機電科技研究所
    http://www.ccda.org.tw/sing_up/CreativityManagement/HumanResources/003.ht
    m
    [48] X. Luo, T. Ishihara. Appl. Phys. Lett 2004, 84, 4780-4782.
    [49] George M. Whitesides, B. Grzybowski. Science 2002, 295, 2418-2421.
    [50] B. D. Yao, Y.F. Chan, N. Wang. Appl. Phys. Lett 2002, 81, 757-759.
    [51] Q. Ye, P. Y. Liu, Z.F. Tang, L. Zhai. Vacuum 2007, 81, 627-631.
    [52] T. Sharda, M. M. Rahaman, Y. Nukaya, T. Soga, T. Jimbo, M. Umeno.
    Diamond and Related Materials 2001, 10, 561-567.
    [53] K.F Hsu, S.Y Tsay, B.J Hwang. J. Mater. Chem 2004, 14, 2690-2695.
    [54] L. Yan, R. Yu, J. Chen and X. Xing. Crystal Growth & Design 2008, 8, 1474-1477
    [55] E. Reverchon. Journal of Supercritical Fluids 1999, 15, 1-21.
    [56] P. D. Cozzoli, A. K, H. Weller. J. Phys. Chem. B 2005, 109, 2638-2644.
    [57] W. Jiang, H.C. Yang, S.Y. Yang, H.E. Horng, J.C. Hung, Y.C. Chen, C.Y. Hong . Journal of Magnetism and Magnetic Material 2004, 283, 210-214.
    [58] 牟中原、陳家俊,科學發展 2000,28 (4) ,581-288
    [59] J.A. Scholl, A. García-Etxarri, A. L. Koh, J.A. Dionne. Nano Lett 2013, 13, 564-569.
    [60] C.S.S.R. Kumar, Faruq Mohammad Advanced Drug Delivery Reviews 2011, 63, 789-808.
    [61]A. Afkhami, M. Saber-Tehrani, H. Bagheri. Journal of Hazardous Materials 2010, 181, 836-844.
    [62] A.V. Zayats, Igor I. Smolyaninov, A. A. Maradudin. Physics Reports 2005, 408, 131-314.
    [63] A.Tao, P. Sinsermsuksakul, P. Yang. Angew. Chem. Int. Ed. 2006, 45, 4597-4601.
    [64] F. Fievet, J.P. Lanier, B. Blin, B. Beaudoin, M. Figlarz. Solid State Ionics. 1989, 32-33 Part 1, 198-205.
    [65] Y. Sun, Y. Xia. Science. 2002, 298, 2176-2179.
    [66] Ocsoy, I., Gulbakan, B., Shukoor, M. I., Xiong, X., Chen, T., Powell, D. H. & Tan, W. ACS Nano. 2013, 7, 417–427.

    無法下載圖示 本全文未授權公開
    QR CODE