簡易檢索 / 詳目顯示

研究生: 林育如
Lin, Yu-Ju
論文名稱: 可作為染敏太陽能電池之8H-茚并-[2,1-b]-噻吩系光敏染料
8H-Indeno[2,1-b]thiophene-based Metal-Free Dyes for Dye-Sensitized Solar Cells
指導教授: 林建村
Lin, Jiann-T'Suen
葉名倉
Yeh, Ming-Chang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 125
中文關鍵詞: 染料敏化太陽能電池8H-茚并-[2,1-b]-噻吩共吸附
英文關鍵詞: DSSCs, indeno[1,2-b]thiophene, co-adsorbent
論文種類: 學術論文
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文合成出一系列以結構較平面之8H-茚并-[2,1-b]-噻吩(indeno[1,2-b]thiophene,Idt)做為共軛架橋基之光敏染料,並應用於染料敏化太陽能電池。我們發現在染料結構中引入Idt片段有助於使吸收波長紅位移,甚至進入近紅外光區,增進光收成能力。在染料的結構設計上,我們以YR1染料為基礎,藉由染料結構之變化來調控HOMO/LUMO能階與光吸收性質,成功合成出YR系列染料。藉由循環伏安法(cyclic voltammetry)、差式脈衝伏安法(differential pulse voltammetry)以及可見-紫外光光譜儀(UV-Vis absorption spectra),我們可以測得化合物在溶液狀態下的HOMO/LUMO能階,以及分子的光收成能力。同時,我們也對這些分子進行電化學阻抗、強度調製光電壓譜和理論計算之探討,以便深入探討分子結構與元件效率之關連性。
    此外,我們發現將共軛片段由Idt的indene五元環處進一步延伸出去將有利於染料的光收成與增進光激發後電子注入TiO2之能力,使得其短路電流值與元件效率有所提升。經由一系列的量測後,我們發現相較於YR1−YR3染料,延伸了共軛片段之YR4−YR6染料其短路電流值有顯著地提升。YR6染料在加入CDCA (chenodeoxycholic acid)為共吸附劑後效率更可達5.06% (光電流,13.71 mA cm-2;光電壓,0.604 V;填充因子,0.61 ),為N719建構標準元件之67%。

    A series of organic sensitizers featuring a planar indeno[1,2-b]thiophene (Idt) as the π-linker of a bridging unit for dye-sensitized solar cells (DSSCs) were synthesized. The introduction of Idt segment was found to be beneficial for red-shifting the absorption wavelength up to the near-infrared region and therefore enhancing the light-harvesting ability. With the triphenylamine(TPA)−Idt−cyanoacrylic acid compound (YR1) as a reference compound, various synthetic strategies had been used for tuning the light-harvesting properties and the HOMO/LUMO energy levels of the molecule. The physical properties of the sensitizers were systematically investigated by cyclic voltammetry, differential pulse voltammetry and UV-Vis absorption spectra. Electrochemical impedance (EIS) and intensity modulated photovoltage spectroscopic (IMVS) studies, and theoretical computations were also carried out on these dye molecules for correlation between the molecular structure and the cell performance.
    Extending the π-linker on the phenyl group of Idt is beneficial to both light-harvesting and electron injection, which results in an improvement in both short-circuit photocurrent density (Jsc) and the overall power conversion efficiency (PCE). Under standard AM 1.5G solar illumination, DSSCs based on YR4−YR6 showed a remarkable increase in short-circuit photocurrent compared to those based on YR1−YR3. Upon addition of chenodeoxycholic acid (CDCA) as the co-adsorbent, the DSSC of YR6 showed an overall power conversion efficiency (PCE) of 5.06% (short-circuit photocurrent density (Jsc), 13.71 mA cm-2; open-circuit photovoltage (Voc), 0.604 V; fill factor (FF), 0.61), which reached 67% of N719-based DSSCs fabricated and measured under similar condition.

    摘要 I Abstract II 謝誌 III 目錄 V 圖目錄 VII 表目錄 IX 附圖目錄 X 第1章 緒論 1 1−1、前言 1 1−2、太陽光譜介紹 1 1−3、太陽能電池簡介 3 1−3−1、矽晶類太陽能電池 4 1−3−2、化合物型太陽能電池 5 1−3−3、鈣鈦礦型太陽能電池 5 1−3−4、有機太陽能電池 6 第2章 研究理論說明與文獻回顧 10 2−1、染料敏化太陽能電池之工作原理 10 2−2、染料敏化太陽能電池之組成結構及元件製作 12 2−2−1、透明導電玻璃 12 2−2−2、多孔性奈米級二氧化鈦光導薄膜電極 13 2−2−3、有機染料 14 2−2−4、電解質溶液 14 2−2−5、對向電極 15 2−3、太陽能電池參數介紹 16 2−4、研究動機 18 第3章 實驗方法與過程說明 26 3−1、實驗儀器 26 3−2、實驗藥品及溶劑 28 3−3、合成步驟及代號 31 3−4、太陽能電池元件製作 60 第4章 結果與討論 62 4–1、實驗合成方法與反應機構之探討 62 4–1–1、本研究論文之反應機構探討 67 4–2、有機染料之物性探討 69 4–2–1、光物理性質之探討 69 4–2–2、TiO2薄膜上的吸收光譜 71 4–2–3、電化學性質之探討 73 4–3、染敏元件效率之探討 76 4–3–1、染敏元件效率表現探討 76 4–3–2、染敏元件EIS性質探討 78 4–3–3、染敏元件之electron lifetime與charge extraction 80 4–4、理論計算之探討 82 4–5、結論 93 參考文獻 94 附圖 99

    1. Grätzel, M. Nature 2001, 414, 338.
    2. 張正華, 李陵嵐,.葉楚平,.楊平華, 有機與塑膠太陽能電池. 五南. 2008, 3
    3. Thekaekara, M. P. Solar Energy. 1976, 18, 309.
    4. (a) Pagliaro, M.; Palmisano, G.; Ciriminna, R. (2008). Flexible Solar Cells. New York: John Wiley. (b) Nelson, Jenny (2003). The Physics of Solar Cells. London: Imperial College Press.(c) Guechi, A.; Chegaar, M.; Aillerie, M. Energy Procedia 2013, 36, 714.
    5. Kallmans, H.; Pope, M. J. Chem. Phys. 1958, 30, 585.
    6. Green, M. A. et al. in“Proceeding of the 21st IEEEPhotovoltaic Specialists Conference.” Orlando, USA: IEEE Publication, 1990.
    7. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676.
    8. 馮垛生, 太陽能發電原理與應用。五南圖書出版股份有限公司. 2009.
    9. 郭明村, 薄膜太陽能電池發展近況。工業材料雜誌. 2003, 203, 138.
    10. Kojima, A.; Teshima K.; Shirai Y.; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
    11. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Sci. Rep. 2012, 2, 591.
    12. Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623.
    13. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
    14. Luo, S.; Daoud, W. A. J. Mater. Chem. A. 2015, 3, 8992.
    15. Williams, R. J. Chem. Phys. 1960, 32, 1505.
    16. Hurd, F.; Livingston, R. J. Phys. Chem. 1940, 44, 865.
    17. 萬海保, 曹立新, 王麗穎, 曾廣賦, 席時權, “染料敏化的TiO2奈米晶多孔膜的性質及光電轉移”化學通報. 1999, 6.
    18. Tsubomura, H.; Matsumura, M.;Nomura, Y.;Amamiya, T. Nature 1976, 261, 402.
    19. O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
    20. Nazeeruddin, M. K.; Kay, A.; Rodicio, L.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am.Chem.Soc. 1993, 115, 6382.
    21. Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
    22. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphrey-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am.Chem.Soc. 2001, 123, 1.
    23. Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, M. S.; Grätzel, M. J. Am. Chem. Soc. 2008, 130, 10720.
    24. Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Grätzel, M. ACS Nano 2009, 3, 3103.
    25. Yella, A.; Lee, H.-W.; Tsao, H.-N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.
    26. Mathew, S.; Yella, A.; Gao, P.; Humphrey-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeerruddin, M. K.; Grätzel, M. Nat. Chem. 2014, 6, 242.
    27. Durrant, J. R.; Haque, S. A. Nat, Mater. 2003, 2, 362.
    28. Ferber, J.; Stangl, R.; Luther, J. Sol. Energy Mater. Sol. Cells 1998, 53, 29.
    29. (a) Nazeeruddin, M. K.; Kay, A.; Rodicio, L.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382. (b) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. (c) Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphrey-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
    30. Hara, K.; Miyamoto, K.; Abe, Y.; Yanagida, M. J. Phys. Chem. B 2005, 109, 23776.
    31. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.
    32. Ma, X.; Hua, J.; Jin, Y.; Meng, F.; Zhan, W.; Tian, H. Tetrahedron 2008, 64, 345.
    33. Yao Z.; Zhang, Min.; Wu, H.; Yang, L.; Li, R.; Wang, P.; J. Am. Chem. Soc. 2015, 137, 3799.
    34. Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.; Park, C.; Lee, M. H.; Lee, W.; Park, J.; Kim, K.; Park, N. G.; Kim, C. Chem. Commun. 2007, 4887.
    35. Tian, H.; Yang, X.; Pan, J.; Chen, R.; Liu, M.; Zhang,Q.; Hagfeldt, A.; Sun, L. Adv. Funct. Mater. 2008, 18, 3461.
    36. Hao, Y.; Tian, H.; Cong, J.; Yang, W.; Bora, I.; Sun, L.; Boschloo, G.; Hagfeldt, A. ChemPhysChem 2014, 15, 3476.
    37. (a) Choi, H.; Baik, C.; Kang, S. O.; Ko, J.; Kang, M.-S.; Nazeeruddin, M. K.; Grätzel, M. Angew. Chem. Int. Ed. 2008, 47, 327. (b) Lim, K.; Kim, C.; Song, J.; Yu, T.; Lim, W.; Song, K.; Wang, P.; Zu, N.; Ko, J. J. Phys. Chem. C 2011, 115, 22640. (c) Gao, P.; Tsao, H. N.; Grätzel, M.; Nazeeruddin, M. K. Org. Lett. 2012, 14, 4330. (d) Chen, J.-H.; Tsai, C.-H.; Wang, S.-A.; Lin, Y.-Y.; Huang, T.-W.; Chiu, S.-F.; Wu, C.-C.; Wong, K.-T. J. Org. Chem. 2011, 76, 8977.
    38. (a) Bai,Y.; Zhang, J.; Zhou, D.; Wang, Y.; Zhang, M.; Wang, P. J. Am. Chem. Soc. 2011, 133, 11442. (b) Tsao, H. N.; Yi, C.; Moehl, T.; Yum, J.-H.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. ChemSusChem 2011, 4, 591. (c) Cai, N.; Moon, S.-J.; Cevey-Ha, L.; Moehl, T.; Humphy-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. Nano Lett. 2011, 11, 1452.
    39. (a) Ko, S.; Choi, H.; Kang, M.-S.; Hwang, H.; Ji, H.; Kim, J.; Ko, J.; Kang, Y. J. Mater. Chem. 2010, 20, 2391. (b) Lin, L.-Y.; Tsai, C.-H.; Wong, K.-T.; Huang, T.-W.; Hsieh, L.; Liu, S.-H.; Lin, H.-W.; Wu, C.-C.; Chou, S.-H.; Chen, S.-H. J. Org. Chem. 2010, 75, 4778.
    40. Chen, J.-H.; Tsai, C.-H.; Wang, S.-A.; Lin, Y.-Y.; Huang, T.-W.; Chiu, S.-F.; Wu, C.-C.; Wong, K.-T. J. Org. Chem. 2011, 76, 8977.
    41. Cai, N.; Li, R.; Wang, Y.; Zhang, M.; Wang, P. Energy Environ. Sci. 2013, 6, 139.
    42. Lim, K.; Kim, C.; Song, J.; Yu, T.; Lim, W.; Song, K.; Wang, P.; Zu, N.; Ko, J. J. Phys. Chem. C 2011, 115, 22640.
    43. Lelie`ge, A.; Le Re’gent, C.; Allain, M.; Blanchard, P.; Roncali, J. Chem. Commun. 2012, 48, 8907.
    44. Lim, K.; Ju, M. J.; Na, J.; Choi, H.; Song, M. Y.; Kim, B.; Song, K.; Yu, J.-S.; Kim, E.; Ko, J. Chem. Eur. J. 2013, 19, 9442.
    45. Lim, K.; Ju, M. J.; Song, J.; Choi, I. T.; Do, K.; Choi, H.; Song, K.; Kim, H. K.; Ko, J. ChemSusChem 2013, 6, 1425.
    46. Capodilupo, A. L.; Marco, L. D.; Fabiano, E.; Giannuzzi, R.; Scrascia, A.; Clarlucci, C.; Corrente, G. A.; Cipolla, M. P.; Gigliacd, G.; Ciccarella, G. J. Mater. Chem. A 2014, 2, 14181.
    47. Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J.-H.; Fantacci,S.; Angelis, F. D.; Censo, D. D.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, 16701.
    48. Brown-Xu, S. E.; Chisholm, M. H.; Durr, C. B.; Lewis, S. A.; Naseri, V.; Spilker, T. F. Chem. Sci. 2013, 4, 2105.
    49. Leliège, A.; Règent, C.-H. L.; Allain, M.; Blanchard, P.; Roncali, J. Chem. Commun. 2012, 48, 8907.
    50. Leliège, A.; Grolleau, J.; Allain, M.; Blanchard, P.; Demeter, D.; Rousseau, T.; Roncali, J. Chem. Eur. J. 2013, 19, 9948.
    51. Pati, P. B.; Zade, S. S. Tetrahedron 2013, 69, 2167.
    52. Chen, C.-H.; Hsieh, C.-H.; Dubosc, M.; Cheng,Y.-J.; Hsu, C.-S. Macromolecules 2010, 43, 697.
    53. De, P. K.; Neckers, D. C. Org. Lett. 2012, 14, 78.
    54. Zhou, N.; Wang, L.; Thompson, D. W.; Zhao, Y. Org. Lett. 2008, 10, 3001.
    55. Zhang, X.-R.; Chao, W.; Chuai, Y.-T.; Ma, Y.; Hao, R.; Zou, D.-C.; Wei, Y.-G.; Wang, Y. Org. Lett. 2006, 8, 2563.
    56. Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636.
    57. Knoevenagel, E. Ber. Dtsch. Chem. Ges. 1898, 31, 2596.
    58. Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969.
    59. Wang, P.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M. J. Phys. Chem. B 2003, 107, 13280
    60. Hiborn, C. Am. J. Phys. 1982, 50, 982.

    無法下載圖示 本全文未授權公開
    QR CODE