簡易檢索 / 詳目顯示

研究生: 葉立恆
Ye, Li-Heng
論文名稱: RUNX1轉錄調控ISX表現以促進急性淋巴性白血病的增生和獲得幹性的能力
RUNX1 transcriptionally regulates ISX to promote proliferation and acquisition of stemness in acute lymphoblastic leukemia
指導教授: 王麗婷
Wang, Li-Ting
口試委員: 王麗婷
Wang, Li-Ting
陳栢均
Chen, Po-Chun
林佩瑾
Lin, Pei-Chin
口試日期: 2024/07/17
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 71
中文關鍵詞: B細胞急性淋巴性白血病癌症幹細胞RUNX1ISXGalectin-9
英文關鍵詞: BCP-ALL, cancer stem cell, RUNX1, ISX, Galectin-9
研究方法: 實驗設計法
論文種類: 學術論文
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 急性淋巴性白血病是兒童最常見的癌症之一,儘管目前治療方法越來越多,但有部分患者的預後仍不佳且易復發,復發原因被推測與癌症幹細胞相關。先前研究已經明瞭 RUNX1 對於造血幹細胞、急性淋巴性白血病及該疾病預後中都扮演重要角色,RUNX1 為轉錄因子,然而對於其作用及機制在急性淋巴性白血病中仍不清楚。急性淋巴性白血病具有不同亞型,多半以何種譜系的增生導致而命名,如 T 細胞或 B 細胞急性淋巴性白血病,本篇則專注在 B 細胞前驅細胞急性淋巴性白血病 (BCP-ALL)。在研究中首先確認患者的預後與 RUNX1 表現量的關係,此外也發現過度表達RUNX1的急性淋巴性白血病細胞會導致細胞增生增加、分泌 Galectin-9 到胞外能力提升及發現在基因層面及蛋白質中 ISX 及幹性相關的表現量也顯著提升,因此透過 Ch-IP 及冷光報導分析發現 RUNX1 藉由結合在 ISX 的啟動子中-40~0序列上。透過靜默 RUNX1 發現 RUNX1 對於ISX、LGALS9、幹性、增生基因表現是必要的。並且利用 RUNX1 以及 ISX shRNA 的細胞轉染驗證 RUNX1 透過 ISX 調控細胞增生能力、惡性程度及 LGALS9 與幹性基因的表達。最終在病人檢體中發現 RUNX1 與 ISX 兩者間具有正相關性,並且觀察到與 RUNX1 高表現預後不佳的情況相同:ISX 高表現病人也預後不佳。

    Acute lymphoblastic leukemia (ALL) is a prevalent childhood cancer. Despite advancements in therapy, some patients face a poor prognosis and risks of relapse linked to cancer stem cells. Research highlights RUNX1's pivotal role in hematopoietic stem cells, ALL, and disease prognosis, yet its exact mechanisms remain unclear. ALL encompasses subtypes like T-cell or B-cell ALL, with this study focusing on B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This study initially elucidated the correlation between patient prognosis and RUNX1 expression. Overexpression of RUNX1 increased cell proliferation and elevated ISX, LGALS9, and stemness genes at both transcriptional and protein levels. Ch-IP and luciferase reporter assay pinpointed RUNX1 binding to the -40 to 0 sequence within the ISX promoter. RUNX1 silencing experiments underscored RUNX1's necessity for ISX, LGALS9, stemness, and proliferation gene expression. Transfection with RUNX1 and ISX shRNA substantiated RUNX1's regulatory role via ISX on the aforementioned gene expressions. Finally, a strong positive correlation between RUNX1 and ISX was validated in patient samples, with high ISX expression correlating with a poor prognosis, paralleling findings with high RUNX1 expression.

    第壹章 前言 1 第一節 白血病 1 第二節 急性淋巴性白血病 (Acute lymphoblastic leukemia) 2 第三節 癌症幹細胞 (Cancer stem cell) 3 第四節 骨髓微環境 4 第五節 Runt-related transcription factor 1(RUNX1) 5 第六節 Intestine-specific homeobox (ISX) 7 第七節 Galectin-9 (Gal-9) 7 第貳章 研究動機及目的 9 第參章 材料方法 10 第一節 懸浮細胞培養與細胞轉染 (Transfection) 10 第二節 慢病毒轉染(Lentivirus Transfection) 10 第三節 核糖核酸萃取 (RNA Extraction) 11 第四節 西方墨點法 (Western Blot) 11 第五節 即時聚合酶連鎖反應 (RT-qPCR) 12 第六節 染色質免疫沉澱分析法 (Chromatin Immunoprecipitation) 12 第七節 雙冷光素酶報導分析 (Dual-Luciferase Reporter Assays) 13 第八節 酵素免疫結合吸附分析法 (Enzyme-Linked Immunosorbent Assay) 14 第九節 溴化去氧尿苷嵌入分析(BrdU incorporation assay) 14 第十節 軟瓊脂膠非固著依賴性聚落生長測試 (Anchorage-Independent Growth Assays) 15 第十一節 病人檢體 15 第十二節 統計分析 15 表1. 抗體列表 16 表2. 引子序列 17 表3. 蛋白質與基因名稱對照表 18 表4. shRNA序列對照表 19 第肆章 結果 20 第一節 RUNX1 在 BCP-ALL 中為致癌基因的可能性 20 第二節 RUNX1 與 ISX 啟動子片段的結合 21 第三節 RUNX1 對 ISX、幹性及增生分子機制的必要及充分性 22 第四節 ISX 在 RUXN1 促進幹性及增生中的關鍵作用 24 第五節 RUXN1及ISX在BCP-ALL患者檢體中的表現及臨床意義 25 第六節 RUNX1 透過 ISX 調控 LGALS9 表現 27 第伍章 討論 28 第陸章 參考資料 32 圖表 40 圖1 ALL細胞株相較於 LCL 中 RUNX1 及 ISX 蛋白質較多 40 圖2 RUNX1 具有與 ISX 啟動子中-40~0片段結合能力 41 圖3 RUNX1 具有與 ISX 啟動子直接結合能力 42 圖4 RUNX1 促進 ISX mRNA 表現 43 圖5 RUNX1 促進增生基因表現 44 圖6 RUNX1 促進幹性基因表現 45 圖7 RUNX1 促進常見白血病突變基因表現 46 圖8 過表現RUNX1會增加ISX、增生、幹性及免疫逃脫相關蛋白表現 47 圖9 RUNX1對於BCP-ALL細胞表現ISX、LGALS9、增生、幹性、常見白血病突變基因的必要 48 圖10 抑制RUNX1會使ISX、增生、幹性、常見白血病突變蛋白質表現下降49 圖11 抑制RUNX1會使ISX、增生、幹性、常見白血病突變蛋白質表現下降統計圖表 50 圖12 RUNX1 透過 ISX 調控增生基因表現 51 圖13 RUNX1 透過 ISX 調控幹性基因表現 52 圖14 RUNX1 透過 ISX 調控常見白血病突變基因表現 53 圖15 RUNX1 透過 ISX 調控增生、幹性、常見白血病突變蛋白質表現 54 圖16-17 RUNX1 透過 ISX 調控增蛋白質之表現統計圖表 55-56 圖18 ISX 對於 RUNX1 加速 BCP-ALL 細胞株增生的必要 57 圖19 ISX 對於 RUNX1 提升 REH 惡性程度的必要性 58 圖20 ISX 對於 RUNX1 提升 Sup-B15 惡性程度的必要性 59 圖21 急性淋巴性白血病病人檢體中 RUNX1 與 ISX 呈高度正相關 60 圖22 高表現 RUNX1病人預後較差 61 圖23 高表現 ISX 病人預後較差 62 圖24 RUNX1 促進 LGALS9 基因表現 63 圖25 RUNX1 對於 BCP-ALL 細胞 LGALS9 基因的必要 64 圖26 RUNX1 透過 ISX 調控 LGALS9 表現 65 圖27 過表現 RUNX1 提升分泌 Galectin-9 到胞外的能力 66 附錄 67

    111年國人死因統計結果. (n.d.). Retrieved from https://www.mohw.gov.tw/cp-16-74869-1.html
    Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. doi:10.3322/caac.21660
    Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. doi:10.3322/caac.21763
    Pui, C.-H. (2009). Acute lymphoblastic leukemia: Introduction. Seminars in Hematology, 46(1), 1–2. doi:10.1053/j.seminhematol.2008.09.011
    朱惠瑜、張德高、黃芳亮,臺中榮民總醫院-taichung veterans general hospital- - 兒童急性淋巴性白血病介紹 (2020). Retrieved from https://www.vghtc.gov.tw/UnitPage/RowViewDetail?WebRowsID=253d440d-9ea8-4adf-bb87-0727615eabcc&UnitID=58875040-4f1e-4ad4-a8ea-9d9c5815b1a4&CompanyID=e8e0488e-54a0-44bf-b10c-d029c423f6e7&UnitDefaultTemplate=1
    Khalade, A., Jaakkola, M. S., Pukkala, E., & Jaakkola, J. J. (2010). Exposure to benzene at work and the risk of leukemia: A systematic review and meta-analysis. Environmental Health, 9(1). doi:10.1186/1476-069x-9-31
    Pogoda, J. M. (2002). Smoking and risk of acute myeloid leukemia: Results from a Los Angeles County Case-control study. American Journal of Epidemiology, 155(6), 546–553. doi:10.1093/aje/155.6.546
    Chessells, J. M. (2001). Down’s syndrome and Acute Lymphoblastic leukaemia: Clinical features and response to treatment. Archives of Disease in Childhood, 85(4), 321–325. doi:10.1136/adc.85.4.321
    Pui, C.-H., Carroll, W. L., Meshinchi, S., & Arceci, R. J. (2011). Biology, risk stratification, and therapy of pediatric acute leukemias: An update. Journal of Clinical Oncology, 29(5), 551–565. doi:10.1200/jco.2010.30.7405
    Phi, L. T. H., Sari, I. N., Yang, Y.-G., Lee, S.-H., Jun, N., Kim, K. S., … Kwon, H. Y. (2018). Cancer Stem Cells (CSCs) in Drug Resistance and Their Therapeutic Implications in Cancer Treatment. Stem Cells International, 2018, 1–16. https://doi.org/10.1155/2018/5416923
    Ishikawa, F., Yoshida, S., Saito, Y., Hijikata, A., Kitamura, H., Tanaka, S., … Shultz, L. D. (2007). Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnology, 25(11), 1315–1321. doi:10.1038/nbt1350
    Senft, D., & Jeremias, I. (2019). A rare subgroup of leukemia stem cells harbors relapse-inducing potential in acute lymphoblastic leukemia. Experimental Hematology, 69, 1–10. doi:10.1016/j.exphem.2018.09.006
    Riether, C., Schürch, C. M., & Ochsenbein, A. F. (2014). Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death & Differentiation, 22(2), 187–198. https://doi.org/10.1038/cdd.2014.89
    Bouillon, A.-S., Ventura Ferreira, M. S., Awad, S. A., Richter, J., Hochhaus, A., Kunzmann, V., … Saußele, S. (2018). Telomere shortening correlates with leukemic stem cell burden at diagnosis of chronic myeloid leukemia. Blood Advances, 2(13), 1572–1579. https://doi.org/10.1182/bloodadvances.2018017772
    Sistigu, A., Musella, M., Galassi, C., Vitale, I., & De Maria, R. (2020). Tuning Cancer Fate: Tumor Microenvironment’s Role in Cancer Stem Cell Quiescence and Reawakening. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.02166
    Holland, J. D., Klaus, A., Garratt, A. N., & Birchmeier, W. (2013). Wnt signaling in stem and cancer stem cells. Current Opinion in Cell Biology, 25(2), 254–264. https://doi.org/10.1016/j.ceb.2013.01.004
    Cochrane, C., Szczepny, A., Watkins, D., & Cain, J. (2015). Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers, 7(3), 1554–1585. https://doi.org/10.3390/cancers7030851
    Venkatesh, V., Nataraj, R., Thangaraj, G. S., Karthikeyan, M., Gnanasekaran, A., Kaginelli, S. B., … Basalingappa, K. M. (2018). Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investigation, 5, 5–5. https://doi.org/10.21037/sci.2018.02.02
    Chen, S., Guttridge, D. C., You, Z., Zhang, Z., Fribley, A., Mayo, M. W., … Wang, C.-Y. (2001). WNT-1 Signaling Inhibits Apoptosis by Activating β-Catenin/T Cell Factor–Mediated Transcription. Journal of Cell Biology, 152(1), 87–96. https://doi.org/10.1083/jcb.152.1.87
    Luo, Q., Liu, P., Yu, P., & Qin, T. (2023). Cancer Stem Cells are Actually Stem Cells with Disordered Differentiation: the Monophyletic Origin of Cancer. Stem Cell Reviews and Reports, 19, 827–838. https://doi.org/10.1007/s12015-023-10508-2
    Guo, W., Lasky, J. L., & Wu, H. (2006). Cancer stem cells. Pediatric Research, 59. doi:10.1203/01.pdr.0000203592.04530.06
    Friedmann‐Morvinski, D., & Verma, I. M. (2014). Dedifferentiation and reprogramming: Origins of cancer stem cells. EMBO Reports, 15(3), 244–253. doi:10.1002/embr.201338254
    McKenzie, M. D., Ghisi, M., Oxley, E. P., Ngo, S., Cimmino, L., Esnault, C., … Dickins, R. A. (2019). Interconversion between tumorigenic and differentiated states in acute myeloid leukemia. Cell Stem Cell, 25(2). doi:10.1016/j.stem.2019.07.001
    Wang, H.-C., Haung, L.-Y., Wang, C.-J., Chao, Y.-J., Hou, Y.-C., Yen, C.-J., & Shan, Y.-S. (2022). Tumor-associated macrophages promote resistance of hepatocellular carcinoma cells against sorafenib by activating CXCR2 signaling. Journal of Biomedical Science, 29(1). https://doi.org/10.1186/s12929-022-00881-4
    Raaijmakers, M. H., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J. A., … Scadden, David. T. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464(7290), 852–857. doi:10.1038/nature08851
    Zambetti, N. A., Ping, Z., Chen, S., Kenswil, K. J. G., Mylona, M. A., Sanders, M. A., … Raaijmakers, M. H. G. P. (2016). Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell, 19(5), 613–627. doi:10.1016/j.stem.2016.08.021
    Winter, S. S., Sweatman, J. J., Lawrence, M. B., Rhoades, T. H., Hart, A. L., & Larson, R. S. (2001). Enhanced t‐lineage acute lymphoblastic leukaemia cell survival on bone marrow stroma requires involvement of LFA‐1 and ICAM‐1. British Journal of Haematology, 115(4), 862–871. doi:10.1046/j.1365-2141.2001.03182.x
    Shalapour, S., Hof, J., Kirschner-Schwabe, R., Bastian, L., Eckert, C., Prada, J., … Seeger, K. (2011). High vla-4 expression is associated with adverse outcome and distinct gene expression changes in childhood B-cell precursor acute lymphoblastic leukemia at first relapse. Haematologica, 96(11), 1627–1635. doi:10.3324/haematol.2011.047993
    Tettamanti, S., Pievani, A., Biondi, A., Dotti, G., & Serafini, M. (2021). Catch me if you can: how AML and its niche escape immunotherapy. Leukemia, 36, 1–10. https://doi.org/10.1038/s41375-021-01350-x
    Sumbayev, V. V., Silva, I. G., Blackburn, J., Gibbs, B. F., Yasinska, I. M., Garrett, M. D., … Ushkaryov, Y. A. (2016). Expression of functional neuronal receptor latrophilin 1 in human acute myeloid leukaemia cells. Oncotarget, 7(29), 45575–45583. doi:10.18632/oncotarget.10039
    Folgiero, V., Goffredo, B. M., Filippini, P., Masetti, R., Bonanno, G., Caruso, R., … Rutella, S. (2013). Indoleamine 2,3-dioxygenase 1 (IDO1) activity in leukemia blasts correlates with poor outcome in childhood acute myeloid leukemia. Oncotarget, 5(8), 2052–2064. doi:10.18632/oncotarget.1504
    Miyoshi, H., Shimizu, K., Kozu, T., Maseki, N., Kaneko, Y., & Ohki, M. (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proceedings of the National Academy of Sciences, 88(23), 10431–10434. https://doi.org/10.1073/pnas.88.23.10431
    Putz, G., Rosner, A., Nuesslein, I., Schmitz, N., & Buchholz, F. (2005). AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene, 25(6), 929–939. https://doi.org/10.1038/sj.onc.1209136
    Fonatsch, C. (2010). The role of chromosome 21 in hematology and oncology. Genes, Chromosomes & Cancer, 49(6), 497–508. https://doi.org/10.1002/gcc.20764
    Choi, Ah., Illendula, A., Pulikkan, J. A., Roderick, J. E., Tesell, J., Yu, J., … Kelliher, M. A. (2017). Runx1 is required for oncogenic Myb and Myc Enhancer activity in T-cell acute lymphoblastic leukemia. Blood, 130(15), 1722–1733. doi:10.1182/blood-2017-03-775536
    Groner, Y., Ito, Y., Liu, P., Neil, J. C., Speck, N. A., Andre Van Wijnen, & Springerlink (Online Service. (2017). RUNX Proteins in Development and Cancer. Singapore: Springer Singapore.
    Tang, F., Yang, Z., Tan, Y., & Li, Y. (2020). Super-enhancer function and its application in cancer targeted therapy. Npj Precision Oncology, 4(1). doi:10.1038/s41698-020-0108-z
    Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., & Speck, N. A. (2009). Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature, 457(7231), 887–891. doi:10.1038/nature07619
    Bahr, C., von Paleske, L., Uslu, V. V., Remeseiro, S., Takayama, N., Ng, S. W., … Spitz, F. (2018). A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature, 553(7689), 515–520. doi:10.1038/nature25193
    Sanda, T., Lawton, L. N., Barrasa, M. I., Fan, Z. P., Kohlhammer, H., Gutierrez, A., … Look, A. T. (2012). Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell, 22(2), 209–221. https://doi.org/10.1016/j.ccr.2012.06.007
    Koh, C. P., Bahirvani, A. G., Wang, C. Q., Yokomizo, T., Ng, C. E. L., Du, L., … Venkatesh, B. (2023). Highly efficient Runx1 enhancer eR1-mediated genetic engineering for fetal, child and adult hematopoietic stem cells. Gene, 851, 147049. https://doi.org/10.1016/j.gene.2022.147049
    Wesely, J., Kotini, A. G., Izzo, F., Luo, H., Yuan, H., Sun, J., … Papapetrou, E. P. (2020). Acute myeloid leukemia ipscs reveal a role for Runx1 in the maintenance of human leukemia stem cells. Cell Reports, 31(9), 107688. doi:10.1016/j.celrep.2020.107688
    Nunes, F. D., Almeida, F. C., Tucci, R., & Sousa, S. C. (2003). Homeobox genes: A molecular link between development and cancer. Pesquisa Odontológica Brasileira, 17(1), 94–98. doi:10.1590/s1517-74912003000100018
    Hsu, S.-H., Wang, L.-T., Lee, K.-T., Chen, Y.-L., Liu, K.-Y., Suen, J.-L., … Wang, S.-N. (2013). Proinflammatory homeobox gene, isx, regulates tumor growth and survival in hepatocellular carcinoma. Cancer Research, 73(2), 508–518. doi:10.1158/0008-5472.can-12-2795
    Wang, S.-N., Wang, L.-T., Sun, D.-P., Chai, C.-Y., Hsi, E., Kuo, H.-T., … Hsu, S.-H. (2016). Intestine-specific homeobox (ISX) upregulates E2F1 expression and related oncogenic activities in HCC. Oncotarget, 7(24), 36924–36939. https://doi.org/10.18632/oncotarget.9228
    Wang, L.-T., Chiou, S.-S., Chai, C.-Y., Hsi, E., Yokoyama, K. K., Wang, S.-N., … Hsu, S.-H. (2017). Intestine-Specific Homeobox Gene ISX Integrates IL6 Signaling, Tryptophan Catabolism, and Immune Suppression. Cancer Research, 77(15), 4065–4077. doi:10.1158/0008-5472.can-17-0090
    Thijssen, V. L., Heusschen, R., Caers, J., & Griffioen, A. W. (2015). Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1855(2), 235–247. https://doi.org/10.1016/j.bbcan.2015.03.003
    Grazier, J. J., & Sylvester, P. W. (2022). Role of Galectins in Metastatic Breast Cancer (H. N. Mayrovitz, Ed.). Retrieved June 30, 2024, from PubMed website: https://www.ncbi.nlm.nih.gov/books/NBK583815/
    Barkan, B., D. Cox, A., & Kloog, Y. (2013). Ras inhibition boosts galectin-7 at the expense of galectin-1 to sensitize cells to apoptosis. Oncotarget, 4(2), 256–268. https://doi.org/10.18632/oncotarget.844
    Pang, N., Alimu, X., Chen, R., Muhashi, M., Ma, J., Chen, G., … Ding, J. (2021). Activated Galectin‐9/Tim3 promotes Treg and suppresses Th1 effector function in chronic lymphocytic leukemia. The FASEB Journal, 35(7). https://doi.org/10.1096/fj.202100013r
    Cao, A., Alluqmani, N., Buhari, F. H. M., Wasim, L., Smith, L. K., Quaile, A. T., … Treanor, B. (2018). Galectin-9 binds IgM-BCR to regulate B cell signaling. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05771-8
    Gonçalves Silva, I., Yasinska, I. M., Sakhnevych, S. S., Fiedler, W., Wellbrock, J., Bardelli, M., … Sumbayev, V. V. (2017). The tim-3-galectin-9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine, 22, 44–57. doi:10.1016/j.ebiom.2017.07.018
    Lee, M., Hamilton, J. A. G., Talekar, G. R., Ross, A. J., Michael, L., Rupji, M., … Henry, C. J. (2022). Obesity-induced galectin-9 is a therapeutic target in B-cell acute lymphoblastic leukemia. Nature Communications, 13(1), 1157. https://doi.org/10.1038/s41467-022-28839-y
    Kikushige, Y., Miyamoto, T., Yuda, J., Jabbarzadeh-Tabrizi, S., Shima, T., Takayanagi, S., … Akashi, K. (2015b). A TIM-3/Gal-9 Autocrine Stimulatory Loop Drives Self-Renewal of Human Myeloid Leukemia Stem Cells and Leukemic Progression. Cell Stem Cell, 17(3), 341–352. https://doi.org/10.1016/j.stem.2015.07.011
    Sue, S., Shibata, W., Eri Kameta, Sato, T., Ishii, Y., Kaneko, H., … Maeda, S. (2016). Intestine-specific homeobox (ISX) induces intestinal metaplasia and cell proliferation to contribute to gastric carcinogenesis. Journal of Gastroenterology, 51(10), 949–960. https://doi.org/10.1007/s00535-016-1176-2
    Jenkins, C. E., Gusscott, S., Wong, R. J., Shevchuk, O. O., Rana, G., Giambra, V., … Weng, A. P. (2018). RUNX1 promotes cell growth in human T-cell acute lymphoblastic leukemia by transcriptional regulation of key target genes. Experimental Hematology, 64, 84–96. https://doi.org/10.1016/j.exphem.2018.04.008
    Santucci, C., Carioli, G., Bertuccio, P., Malvezzi, M., Pastorino, U., Boffetta, P., … La Vecchia, C. (2020). Progress in cancer mortality, incidence, and survival: a global overview. European Journal of Cancer Prevention, 29(5), 367–381. https://doi.org/10.1097/cej.0000000000000594
    Marzagalli, M., Fontana, F., Raimondi, M., & Limonta, P. (2021). Cancer Stem Cells—Key Players in Tumor Relapse. Cancers, 13(3), 376. https://doi.org/10.3390/cancers13030376
    Li, Q., Lai, Q., He, C., Fang, Y., Yan, Q., Zhang, Y., … Liu, S. (2019). RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. Journal of Experimental & Clinical Cancer Research, 38(1). https://doi.org/10.1186/s13046-019-1330-9
    Van Bragt, M. P., Hu, X., Xie, Y., & Li, Z. (2014). RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. ELife, 3. https://doi.org/10.7554/elife.03881
    Fernández, N. B., Sosa, S. M., Roberts, J. T., Recouvreux, M. S., Rocha-Viegas, L., Christenson, J. L., … Rubinstein, N. (2023). RUNX1 Is Regulated by Androgen Receptor to Promote Cancer Stem Markers and Chemotherapy Resistance in Triple Negative Breast Cancer. Cells, 12(3), 444–444. https://doi.org/10.3390/cells12030444
    Regha, K., Assi, S. A., Tsoulaki, O., Gilmour, J., Lacaud, G., & Bonifer, C. (2015). Developmental-stage-dependent transcriptional response to leukaemic oncogene expression. Nature Communications, 6(1). https://doi.org/10.1038/ncomms8203
    Norio Asou, Yanagida, M., Huang, L., Yamamoto, M., Katsuya Shigesada, Hiroaki Mitsuya, … Osato, M. (2007). Concurrent transcriptional deregulation of AML1/RUNX1 and GATA factors by the AML1-TRPS1 chimeric gene in t(8;21)(q24;q22) acute myeloid leukemia. Blood, 109(9), 4023–4027. https://doi.org/10.1182/blood-2006-01-031781
    Liu, S., Shen, T., Huynh, L., Klisovic, M. I., Rush, L. J., Ford, J., … Marcucci, G. (2005). Interplay of RUNX1/MTG8 and DNA Methyltransferase 1 in Acute Myeloid Leukemia. Cancer Research, 65(4), 1277–1284. https://doi.org/10.1158/0008-5472.can-04-4532
    Song, H., Jae Hyun Kim, Jae Kyun Rho, Sun Young Park, Chul Geun Kim, & Soo Young Choe. (1999). Functional Characterization of TEL/AML1 Fusion Protein in the Regulation of Human CR1 Gene Promoter. Molecules and Cells/Molecules and Cells, 9(5), 560–563. https://doi.org/10.1016/s1016-8478(23)13585-0
    Jae Kyun Rho, Jae Hyun Kim, Yu, J., & Soo Young Choe. (2002). Correlation between cellular localization of TEL/AML1 fusion protein and repression of AML1-mediated transactivation of CR1 gene. Biochemical and Biophysical Research Communications, 297(1), 91–95. https://doi.org/10.1016/s0006-291x(02)02075-2
    T Niini, J Kanerva, K Vettenranta, UM Saarinen-Pihkala, S Knuutila. AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia. Haematologica 2000;85(4):362-366; https://doi.org/10.3324/%x
    Wang, L., Liu, K., Jeng, W., Chiang, C., Chai, C., Chiou, S., … Hsu, S. (2020). PCAF ‐mediated acetylation of ISX recruits BRD 4 to promote epithelial‐mesenchymal transition. EMBO Reports, 21(2). https://doi.org/10.15252/embr.201948795
    Gilmour, J., Assi, S. A., Noailles, L., Lichtinger, M., Obier, N., & Bonifer, C. (2018). The Co-operation of RUNX1 with LDB1, CDK9 and BRD4 Drives Transcription Factor Complex Relocation During Haematopoietic Specification. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28506-7
    Wu, S., Jiang, Y., Hong, Y., Chu, X., Zhang, Z., Tao, Y.-F., … Hu, S. (2021). BRD4 PROTAC degrader ARV-825 inhibits T-cell acute lymphoblastic leukemia by targeting “Undruggable” Myc-pathway genes. Cancer Cell International, 21(1). https://doi.org/10.1186/s12935-021-01908-w
    Wu, T., Pinto, H., Kamikawa, Yasunao F., & Donohoe, Mary E. (2015). The BET Family Member BRD4 Interacts with OCT4 and Regulates Pluripotency Gene Expression. Stem Cell Reports, 4(3), 390–403. https://doi.org/10.1016/j.stemcr.2015.01.012

    無法下載圖示 電子全文延後公開
    2028/11/30
    QR CODE