研究生: |
戴志偉 Chih-Wei Tai |
---|---|
論文名稱: |
非晶矽、微晶矽之應力分析於太陽能電池與薄膜電晶體應用 Mechanical Stress Analysis of Amorphous and Microcrystalline Silicon in Solar Cells and Thin Film Transistors Applications |
指導教授: |
李敏鴻
Lee, Min-Hung |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 應力行為 、異質接面 、非晶矽 、微晶矽 |
英文關鍵詞: | Mechanical Stress, Heterojunction, Amorphous Silicon, Microcrystalline Silicon |
論文種類: | 學術論文 |
相關次數: | 點閱:117 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
內容屬機密不公開
內容屬機密不公開
[1] R.W. Collins, et al., “Application of deposition phase diagrams for the optimisation of a-Si:H-based materi-als and solar cells” Mat. Res. Soc. Symp. Proc. 762, A10.1.1–A10.1.12 2003.
[2] 李海崧 “太陽能電池系統介紹” Sunshine & Greenland陽光綠地, 2009
[3] A. Kolodziej “Staebler-Wronski effect in amphous silicon and its alloys” Opto-Electronics Review Vol.12, pp.21–32 2004
[4] Chen-Wei Lin, et al., “A Novel Pixel Design for AM-OLED Displays Using Nanocrystalline Silicon TFTs” IEEE Transactions on Very Large Integration Systems (VLSI) , Vol.19, NO.6 2011
[5] M. Mizukami, et al., “Flexible AM OLED Panel Driven by Bottom-Contact OTFTs” IEEE Electron Device Lett., Vol.27, pp.249-251 2006
[6] K. Long, et al., “Stability of Amorphous-Silicon TFTs Deposited on Clear Plastic Substrates at 250 C to 280 C” IEEE Electron Device Lett., Vol.27, pp.111-113 2006
[7] H. Gleskova, et al., “Electrical response of amorphous silicon thin-film transistors under mechanical strain” Journal of Applied Physics, Vol.92, pp.6224-6229 2002
[8] H. Gleskova, et al., “Failure resistance of amorphous silicon transistors under extreme in-plane strain ” Journal of Applied Physics, Vol.75, pp.3011-3013 1999
[9] http://www.matweb.com, 24/06/2011
[10] Yasufumi Tsunomura, et al., “Twenty-two percent efficiency HIT solar cell” Solar Energy Materials & Solar Cells Vol.93, pp.607-673 2009
[11] M.R. Page , et al., “Amorphous/crystalline silicon heterojunction solar cells with varying i-layer thickness” Vol.519, pp. 4527-4530 2011
[12] Mikio Taguchi, et al., “Obtaining a Higher Voc in HIT Cells” Progress in Photovoltaics Research and Applcations Vol.13, pp.481–488 2005
[13]http://www.eettaiwan.com/ART_8800423831_675763_TA_92a2732f.HTM 2006
[14] J. J. Huang, et al., SID. San Antonio, p.866-869. 2006
[15] 陳志强 “可撓曲的面板-塑膠基板顯示器” 工業材料雜誌 188期
[16] 雷永泉、萬群與石永康, “新能源材料” 新文京出版社, pp.296-299 2004
[17] “Solar generation V-2008/Solar electricity for over one billion people and two million jobs by 2020” EPIA, Sep. 2008
[18] Daisuke Ide, et al., “Excellent power-generating properties by using the HIT structure.” Photovoltaic Specialists Conference, pp.1-5 2008
[19] Makoto Tanaka, et al., “Development of New a-Si/c-Si Heterojunction Solar Cells:ACJ-HIT(Artificially Constructed Junction Heterojunction with Intrinsic Thin-Layer)” J. Appl.Phys. Vol.31, pp. 3518-3522 1992
[20] PV Education.org http://pveducation.org/pvcdrom/design/surface-texturing
[21] Dale, B., et al., "High efficiency silicon solar cells", Proceedings of the 14th Annual Power Sources Conference: U.S. Army Signal Research and Development Lab, pp.22 1960.
[22] Bailey, et al., “Texture etching of silicon: method”, United States Patent: 4137123 1979.
[23] K. Wakisaka, et al., ”More than 16% Solar cells with a new “HIT” (doped a-Si/non-doped a-Si/crystalline Si) structure ” Photovoltaic Specialists Conference, pp.887-892 1991
[24] I. Gordon, et al., ”8% Efficient Thin-Film Polycrystalline-Silicon Solar Cells Based on Aluminum-Induced Crystallization and Thermal CVD” Prog. Photovolt: Res. Appl.Vol.15, pp.575–586 2007
[25] Toru Sawada, et al., “High-Efficiency a-Si/c-Si Heterojunction Solar cell” First WCPEC pp.1219-1226 1994
[26] Mitsuyuki Yamanaka, et al., “Low temperature Back-Surface-Field (BSF) technology for crystalline silicon (c-Si) thin film solar cells based on heterojunction between silicon and c-Si ” Photovoltaic Energy Conversion, Vol.2, pp.1421-1424 2006
[27] Eiji Maruyama, et al., “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business” Photovoltaic Energy Conversion Vol.2, pp.1455-1460 2006
[28] Madhumita Nath, et al., ”Criteria for improved open-circuit voltage in a‐Si:H(N)/c‐Si(P) front heterojunction with intrinsic thin layer solar cells” American Institute of Physics Vol.103, 034506-1 2008
[29] Taguchi, M., et al., “An approach for the higher efficiency in the HIT cells” Photovoltaic Specialists Conference pp.866-870 2005
[30] PV Education.org http://pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature
[31] Hitoshi Sakata, et al., “20.7% Highest efficiency large area (100.5cm2) HITTM cell” Photovoltaic Specialists Conference pp.7-12 2000
[32] Hiroyuki Fujiwara, et al., “Optimization of interface structures in crystalline silicon heterojunction solar cells” Solar Energy Materials & Solar Cells Vol.93, pp.725–728 2009
[33] Hiroyuki Fujiwara, et al., “Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells” Applied Physics Letters Vol.91, 133508 2007
[34] Alexander Ulyashin, et al., “Minority currier lifetime improvenment in P-type silicon by oxygen related centers getteung at low temperatures application to the heterojunction solar cell processing” World Conference on Photovoltaic Energy Conversion pp.1088-1091 2003
[35] Emanuele Centurioni et al., “Role of Front Contact Work Function on Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cell Performance” IEEE ELECTRON DEVICE LETTERS, Vol. 24, NO.3 2003
[36] Jesús A. del Alamo et al., “Modelling of minority-carrier transport in heavily doped silicon emitters ” Solid State Electron. Vol.30, pp.1127-1136 1987
[37] 林明獻, “太陽能電池技術入門”全華出版社, chaper. pp.1-4, 2008
[38] Yue Kuo “THIN FILM TRANSISTORS Materials and Process” Kluwer Academic pp.18-20 2004
[39] J. J. Wesler, Ph. D. thesis, Stanford University , 1996
[40] M. H. Lee, et al., “Comprehensive Low-Frequency and RF Noise Characteristics in Strained-Si NMOSFETs”, International Electron Device Meeting (IEDM) pp.69-72 2003.
[41] Martin Green, Solar cells Operating Principles, technology and System Applications, University of New South Wales, February pp.86-88 1992
[42] http://upload.wikimedia.org/wikipedia/commons/3/3a/Tftcircuit.jpg
[43] http://commons.wikimedia.org/wiki/File:OLED-Pixel.2T1C_(P-TFT).svg
[44] 葉永輝 新電子201期12月號 2006。
[45] R. A. Street “Technology and Application of Hydrogenated Amorphous Silicon.” New York: Springer Verlag, 2000.
[46] M. J. Williams, et al., “A comparative study of the light-induced defects in intrinsic amorphous and microcrystalline silicon deposited by remote plasma enhanced chemical vapor deposition”AIP Conf. Proc. Vol.234, pp.211-217 1991
[47] R. Fluckiger, et al., ”Electrical properties and degradation kinetics of compensated hydrogenated microcrystalline silicon deposited by very high‐frequency‐glow discharge” J. Appl. Phys. Vol.77, pp.712 1995.
[48] 戴亞翔 “TFT-LCD 面板的驅動與設計”五南圖書 pp.345-346 2008。
[49] M. J. Powell “The physics of amorphous-silicon thin-film transistors”IEEE Trans. Electron Devices, vol. 36 no. 12 pp. 2753–2763, 1989.
[50] Corinne Droz, et al., ”Electrical and Microstructural Characterisation Microcrystalline Silicon Layers and Solar Cells” 3rd World Conference on Photovoltaic Energy Conversion. Paper 5O-A3-01 Osaka. Japan. 2003
[51] Jin He, et al., “A physics-based analytic solution to the MOSFET surface potential from accumulation to strong-inversion region” IEEE Trans on Electron Device Vol.53, pp.2008-2016 2006.
[52] Gregory Choong, et al., “High mobility bottom gate microcrystalline silicon TFT deposited by VHF PECVD” the Proceedings of the 5th International TFT Conference 3.3 2009
[53] Hsiang-na Liu et al., “The Staebler-Wronski effect in microcrystalline silicon films ” Solid State Comm., Vol.58, pp.601-603 1986
[54] Kah-Yoong Chan, et al., “High-mobility microcrystalline silicon thin-film transistors prepared near the transition to amorphous growth” Journal of Applied Physics Vol.104, 054506 2008
[55] Bui, et al., ”Microcrystalline Silicon TFTs for Active Matrix Displays" SID
Symposium Digest of Technical Papers Vol.37, pp.204 2006
[56] http://www.matweb.com, 24/06/2011
[57] A. L. Del Vecchio et al., “The effect of deposition rate on the intrinsic stress in copper and silver thin films ” Journal of applied physics Vol.101, 063518,2007
[58] George E. Totten , ” Handbook of residual stress and deformation of steel ” , ASM International, 01/03/2001
[59] http://www.landon.com.tw/blog/index.php, 24/06/2011
[60] Ryo Hayashi et al., “Improved Amorphous In-Ga-Zn-O TFTs” SID DIGEST pp.621-624 2008
[61] Je-hun Lee et al., “World’s Largest (15-inch) XGA AMLCD Panel Using IGZO Oxide TFT” SID DIGEST pp.625-628 2008