研究生: |
李明輝 Ming-Fai Lee |
---|---|
論文名稱: |
變分不等式解的存在性與特徵 Characterization and existence of solutions to variational inequalities |
指導教授: |
朱亮儒
Chu, Liang-Ju |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 25 |
中文關鍵詞: | 變分不等式 、參數變分不等式 、Karamardian 條件 、強制條件 、極大單調 、嚴格單調 、強單調 、非環多值函數 |
英文關鍵詞: | variational inequality, parametric variational inequality, Karamardian condition, coercive condition, maximal monotone, strictly monotone, strongly monotone, acyclic multifunction |
論文種類: | 學術論文 |
相關次數: | 點閱:223 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去數十年間一般變分不等式解的存在性已有快速的發展;而此篇論文的主要內容是在減弱算子和限制集合的條件下對於變分不等式建立一些解的存在性定理及特徵;在第二節中,我們主要是針對在不同形式的Karamardian 條件下,探討參數變分不等式解的存在性;而在第三節中,我們將探討各種不同單調算子在一般變分不等式解集合的特性;最後在有限維空間建立一可應用於數理經濟的等價關係o
Existence results are developed for generalized variational inequalities. In addition, we also establish several related characteristics about solutions. This is done by studying a certain parametric family of variational inequality problems.
The treatment covers noncompact convex constraint regions in
locally convex topological vector spaces and upper semicontinuous operators having acyclic images. The main results rely on some coercivity conditions of Karamardian's type for multivalued operators. Further, we establish some interesting equivalent characteristics in the setting Hilbert spaces. In virtue of some kind of monotonicity, those results extend several existence results in the literature
of nonlinear variational inequalities.
[1] C. Baiocchi and A. Capelo, Variational and quasi-variational inequalities, Applications to free-boundary problems, John Wiley and Sons Ltd, New York, 1984.
[2] M. Bianchi and S. Schaible, An extension of pseudolinear
functions and variational inequality problems, J. Optim. Theory Appl.104(1) (2000), 59-71.
[3] E.G. Begle , Locally connected spaces and
generalized manifolds, Amer. Math. J. 64 (1942), 553-574.
[4] A. Bensoussan and J.L. Lion, Controle
impulsionnel et inequations quasi-variation
nelles d'evolution, C.R. Acad. Sci. Paris Ser. A 276 (1973), 1333-1338.
[5] H. Bre'zis, E'quations et in e'quations nonline'aires dans les espaces vectoriels en dualite', Ann. Inst. Fourier
18 (1) (1968), 115-175.
[6] F.E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math. 26 (1984), 67-80.
[7] S.S. Chang, B.S. Lee, X. Wu, Y.J. Cho, and G.M. Lee,
On the generalized quasivariational inequality problems
, J. Math. Anal. Appl. 203 (1996), 686-711.
[8] L.J. Chu, On the sum of monotone operators, Mich. Math. J. 43(2) (1996), 273-291.
[9] L.J. Chu, Unified approaches to nonlinear optimization, Optimization 46 (1999), 25-60.
[10] R.W. Cottle , Complementarity and variational
problems, Sympos. Math. 19 (1976), 177-208.