簡易檢索 / 詳目顯示

研究生: 李訓欣
Shiunn-Shin Lee
論文名稱: 植基於類神經網路之車型機器人路徑規劃
Path Planning for Moving Robot Based on Neural network
指導教授: 莊謙本
Chuang, Chien-Pen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 多機器人路徑規劃倒傳遞類神經網路
英文關鍵詞: Multi-Robot, Path Planning, Back-Propagation Neural Network
論文種類: 學術論文
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來機器人的研究逐漸受到重視,而隨著機器人科技的進步,機器人的發展趨勢從單一機器人獨立完成任務演化成多機器人團隊分工合作完成複雜的任務。而在多機器人處理複雜工作時必須考慮到路徑規劃的問題,但傳統的路徑判斷中大多在已知固定環境作精準的路徑判斷。

    本研究旨在利用倒傳遞類神經網路進行路徑規劃事前的學習工作,以機器人自走車配置的超音波感測器來讀取環境中的距離和方向。當感測器取得環境的幾何特徵,即將相關資訊匯入倒傳遞類神經網路進行環境的辨識。本研究共採用7種基本環境類型數據,供自走車機器人作路口判斷。實驗結果證實判斷準確。

    Recently, the robot research has been gradually received attention. Along with the trends of robot technology development, more research focus on multi-robot team work than single robot independent work. And path planning of moving multi-robot is complicated for finishing team work. It is quite different from the traditional path planning in the static environment.

    The main purpose of this research was to develop a path planning algorithm for a robot moving in an unknown environment. Some ultrasonic sensors were used to pick up environmental data such as distance and direction then input these data to a back-propagation neural network to carry out the path planning. Seven environmental situations were used in this research. The experimental results showed that the purposed algorithm can work precisely for a robot to make decision when encounters complicated crossroad.

    摘  要 I ABSTRACT II 誌  謝 III 表 目 錄 VI 圖 目 錄 VII 第一章  緒論 1 1.1研究背景 1 1.2研究動機 3 1.3研究目的 3 1.4研究流程 4 1.5論文架構 5 第二章  相關理論與文獻探討 6 2.1機器人路徑規劃之相關文獻 6 2.2類神經網路原理 10 2.2.1類神經網路模式架構 10 2.2.2類神經網路種類 14 2.3類神經網路之路徑規劃相關文獻 19 第三章  系統架構設計 24 3.1機器人之硬體架構 24 3.1.1idRobot-EZ型機器人規格 25 3.1.2超音波感測器 26 3.1.3馬達、輪子與編碼器 28 3.1.4電池及電力系統 28 3.2多機器人路徑規劃之系統架構 29 3.2.1倒傳遞類神經網路 29 3.2.2類神經學習辨別環境 33 3.2.3類神經網路學習過程 36 3.3自走車運動模式 38 3.3.1障礙物迴避機制 40 第四章  實驗結果 43 4.1開發環境 43 4.2判斷方法 48 4.3類神經網路學習結果 49 4.3.1結果分析 49 4.3.2路口準確度分析 61 4.3.3路口結果模擬 62 第五章  結論與未來工作 64 5.1結論 64 5.2未來工作 65 參考文獻 66

    [1] 王維漢,“智慧機器人技術專輯主編前言”,機械工業雜誌,281期.
    [2] iRobot, http://store.irobot.com/corp/index.jsp.
    [3] WowWee,http://www.wowwee.com/.
    [4]T. Balch, R.C Arkin ,“behavior-based formation control for multi-robot teams ”, Robotics and Automation, Vol. 6, Issue 14, pp.926-939,1998.
    [5]C.Y. Chen, T-H.S. Li,”A real-time role assignment mechanism for five-on-five robot soccer competition” IEEE International Conference Networking, Sensing and Control, Vol. 2, pp.1099-1104,2004.
    [6] http://www.robotworld.org.tw/index.htm?pid=10&News_ID=3970
    [7] G. Gilbert, “Distance functions and their application to robot path planning in the presence of obstacles,” IEEE journal and automation, vol. ra-1, no.1, March, 1985.
    [8] Yi Guo and Lynne E.parker,”A distributed and optimal motion planning approach for multiple mobile robots”, Proceedings of IEEE international Conference on Robotics & Automation.2002.
    [9] Amui,”Multi-Robot Path Planning for Dynamic Environments: A case study” Proceedings of IEEE international Conference on Intelligent Robots and Systems, pp 1245-1250,2001.
    [10] S.N.Maheshwari and S.Kapoor,”Efficiently constructing the visibility graph of a simple polygon with obstacles”SIAM Journal on Computing, vol.30, pp.847-871,2000.
    [11] B.R.Donald.”Motion Planning with six degrees of freedom”Technical Report AIM-791,MIT Artificial Intelligence Laboratory,1984.
    [12] K.L.Trovato and L.Dorst,”Differential A*”,IEEE Transactions on Knowledge and Data Engineering,vol.14,pp.1218-1299,2002.
    [13] P.Turennout,and M.C.Lee,”Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing”Proceedings of the IEEE International Symposium on Industrial Electronics ,pp. 1530-1535,2001.
    [14] P.Vadallepat,T.C.Kay,and M.L.Wang,”Evolutionary artificial potential fields and their application in real time robot path”Proceedings of IEEE Congress on Evolutionary Computation,pp.256-263,2000.
    [15] aixiong Zheng, Liangyi Yang,”Optimal Ant Colony Algorithm based Multi-Robot Task Allocation and Processing Sequence Scheduling” IEEE International Conference , Control and Automation, June 25-27,2008.
    [16] B. Beaufrere, and S. Zeghloul , “Avoidance of moving obstacles by a mobile robot,” In Proveedings of the 3rd 1ASTED International Conference on robotics and Manufacturing, pp.237-240.
    [17] T. L. Lee, and C. J. Wu, “Fuzzy Motion planning of mobile robot in unknown environment,” Journal of Intelligent and Robotic System: Theory andApplications, v37,n2,June,2003, p177-191.
    [18] M. B. Montaner, and R. S. Alejandro, “Fuzzy knowledge-based controller design for autonomous robot navigation,” Expert System with Applications, v14,
    n1-2,January/February,1998, p179-186.
    [19] F. Pourboghrat, and M. P. Karlosson, “Adaptive control of dynamic mobile robot with nonholonomic constraints,” Computers and Electrical Engineering ,v28 (2002) p241-253.
    [20] A. Foudil, and B. Khier, and M. Eric , “A fuzzy-based reactive controller for a non-holonomic mobile robot,” Robotics and Autonomous Sytem 47(2004)p31-46.
    [21] I. Kolmanovsky, and N.H. McClamroch, “Developments in nonholonomic control problems,” IEEE Control System Magaz 1995; 15(6):20–36.
    [22] H. J. Uang, and G.S. Huang, “A robust fuzzy model following observer-based control design for nonlinear system,” IEEE Conference on Control Applications,2004.
    [23] 尤清達,以數位信號處理實現模糊理論於車型機器人的避障策略,逢甲大學自動控制工程研究所碩士論文,2004。
    [24] 王興仁,”整合基因演算與模糊控制法於自走式機器人之路徑規劃”, 中原大學, 機械工程研究所碩士論文, 1982。
    [25]黃惟誠“類神經網路於車輛自動駕駛自主避障學習機制之研究”,明道大學, 資訊工程學系碩士論文,2000。
    [26]黃國和,應用類神經網路與超音波感測器於車型機器人之路徑追蹤與避障,成功大學,電機工程學系碩士論文,2006。
    [27] Won-Seok Choi and Se-Young Oh” Range Sensor-Based Robot Localization Using Neural Network”, International Conference on Control , Automation and Systems 2007.
    [28] DU Xin , CHEN Hua-hua, GU Wei-kang Neural network and genetic algorithm based global path planning in a static environment “Journal of Zhejiang University SCIENCE.
    [29] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III,R. L. Moses, and N. S. Correal, “Locating the Nodes: Cooperative Localization in Wireless Sensor Networks,”IEEE Signal Processing Magazine, vol. 22, issue 4, pp. 54-68, July 2005
    [30] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and N. S. Correal, “Locating the Nodes: Cooperative Localization in Wireless Sensor Networks,” IEEE Signal Processing Magazine, vol. 22, issue 4, pp. 54-68, July 2005.
    [31] G. Sun, J. Chen, W. Guo, and K. J. R. Liu, “Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs,” IEEE Signal Processing Magazine, vol. 22, issue 4, pp. 12-23, July 2005.
    [32] http://cc1.ioionet.com/~subnet755/idminer/pdf/idrobot-ez-tw-total. (31/01/2009)
    [33] F. M. Raimondi, M. Melluso, L. S. Ciamcimino (2005, Sept.). A new kinematic and dynamic direct adaptive fuzzy control of constrained mobile wheeled vehicles. IEEE Conference on Emerging Technologies and Factory Automation, vol.2, pp.8.

    無法下載圖示 本全文未授權公開
    QR CODE