研究生: |
謝宜翔 Hsieh, Yi-Hsiang |
---|---|
論文名稱: |
KIF12在大腸癌幹細胞中所扮演的角色 The role of KIF12 in colorectal cancer stem cell |
指導教授: |
賴韻如
Lai, Yun-Ju |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 大腸結腸癌 、癌症幹細胞 、驅動蛋白質超級家族 、驅動蛋白質家族成員12 |
英文關鍵詞: | Colorectal cancer, Cancer stem cells, Kinesin superfamily protein, Kinesin family member 12 |
DOI URL: | http://doi.org/10.6345/NTNU201900565 |
論文種類: | 學術論文 |
相關次數: | 點閱:188 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腸直腸癌是全球發生率排名第三的癌症,現今治療方式以手術切除、化學治療及放射治療為主,這些傳統治療方法僅對癌症早期病患有效,對癌症晚期病患治療效果有限。癌症預後不良可能是因為癌症中有一群癌幹細胞存在。癌幹細胞有人稱之為腫瘤初始細胞,癌幹細胞具有自我更新、分裂及分化成癌細胞的能力,同時也具有將化療藥排出細胞外的蛋白質通道,因此癌幹細胞成為癌症預後不良的關鍵之一。我們發現驅動蛋白家族成員12(Kinesin Family Member 12;KIF12)mRNA表現量在大腸癌檢體培養出之類癌幹細胞球中皆高於原腫瘤檢體及其貼盤培養之細胞。KIF12是一種微管相關的運動蛋白,在細胞質分裂時扮演重要角色。為了進一步研究大腸癌幹細胞以及KIF12的關係,我們檢測了五種大腸癌細胞株包括HCT116、HT29、SW480、SW620、與DLD1,其癌細胞和類癌幹細胞的RNA及蛋白質,觀察到在HT29與SW480細胞中,KIF12的表現量在類癌幹細胞中皆比癌細胞高。我們接著以SW480建立削弱KIF12的穩定細胞株(shKIF12),並進行細胞增殖及群落大小檢測。結果顯示shKIF12相較於對照組細胞株(shScramble)在細胞增殖能力上有顯著降低。另外分析shKIF12細胞之細胞週期,發現其相較於對照組細胞株(shScramble)在G0/G1累積上有增加。因自噬作用被研究出可調控癌幹細胞的維持,因此我們亦檢測細胞自噬作用。結果發現shKIF12細胞之自噬作用蛋白LC3B-II蛋白質相較於對照組細胞株(shScramble)有顯著降低。根據以上結果,KIF12可能調節著大腸癌類幹細胞增殖、維持及自噬的能力。
Colorectal cancer (CRC) is the third-leading cancer in the world. The treatments today include surgical excision, radiotherapy and chemotherapy. Patients in the early stages have higher survival rate, but have very poor prognosis in the late stages. Previous studies have reported that the poor prognosis may be due to the existence of cancer stem cells (CSC). These CSCs cause tumor formation, recurrence, metastasis and resistance to chemotherapies. Therefore, CSCs become one of the keys to poor prognosis of patients. We found here that the expression of Kinesin Family Member 12 ( KIF12 ) is higher in tumorspheres compared to the original tumor sample and primary cultured cancer cells. To further study the relationship between CRC stem cells (CRCSC) and KIF12, we examined the RNA and proteins of five colorectal cancer cell lines, including HCT116, HT29, SW480, SW620 and DLD1, by RT-PCR and Western blot analysis respectively. We found that KIF12 was expressed higher in tumorspheres of HT29 and SW480 cells. We next established SW480 stable cell line with knocked-down KIF12 (shKIF12) and performed the cell proliferation and sphere size analysis. The results showed that the proliferation and the size of tumorspheres in shKIF12 cells is significantly decreased compared with control cells (shScramble). Moreover, we analyzed the cell cycle of shKIF12 cells and found the G0/G1 accumulation of these cells compared to control. Since the autophage has been reported to regulate the maintenance of the CSC, we further demonstrated that the expression of autophagy protein LC3B-II is decreased in shKIF12 cells compared to shScramble control. These results showed that KIF12 may be one of the key regulators for the proliferation, maintenance and regulation of autophagy of CRCSCs.
Acunzo, M., et al. (2015). "MicroRNA and cancer--a brief overview." Adv Biol Regul 57: 1-9.
Aghabozorgi, A. S., et al. (2018). "Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives." Biochimie 157: 64-71.
Alison, M. R., et al. (2012). "Cancer stem cells: in the line of fire." Cancer Treat Rev 38(6): 589-598.
Arnold, M., et al. (2017). "Global patterns and trends in colorectal cancer incidence and mortality." Gut 66(4): 683-691.
Banzhaf-Strathmann, J. and D. Edbauer (2014). "Good guy or bad guy: the opposing roles of microRNA 125b in cancer." Cell Commun Signal 12: 30.
Bartel, D. P. (2004). "MicroRNAs: Genomics, Biogenesis, Mechanism, and Function." Cell 116(2): 281-297.
Batlle, E. and H. Clevers (2017). "Cancer stem cells revisited." Nat Med 23(10): 1124-1134.
Benard, A., et al. (2014). "DNA methylation of apoptosis genes in rectal cancer predicts patient survival and tumor recurrence." Apoptosis 19(11): 1581-1593.
Bonnet, D. and J. E. Dick (1997). "Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell." Nat Med 3(7): 730-737.
Broske, A. M., et al. (2009). "DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction." Nat Genet 41(11): 1207-1215.
Carlomagno, C., et al. (2018). "Multiple treatment lines and prognosis in metastatic colorectal cancer patients." Cancer Metastasis Rev.
Chen, M., et al. (2018). "Targeting TPX2 suppresses proliferation and promotes apoptosis via repression of the PI3k/AKT/P21 signaling pathway and activation of p53 pathway in breast cancer." Biochem Biophys Res Commun 507(1-4): 74-82.
Chen, Q., et al. (2007). "The localization of inner centromeric protein (INCENP) at the cleavage furrow is dependent on Kif12 and involves interactions of the N terminus of INCENP with the actin cytoskeleton." Mol Biol Cell 18(9): 3366-3374.
Cheng, X., et al. (2019). "Therapeutic potential of targeting the Wnt/beta-catenin signaling pathway in colorectal cancer." Biomed Pharmacother 110: 473-481.
de Vries, A., et al. (2002). "Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function." Proc Natl Acad Sci U S A 99(5): 2948-2953.
Degenhardt, K., et al. (2006). "Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis." Cancer Cell 10(1): 51-64.
Dou, J. and N. Gu (2010). "Emerging strategies for the identification and targeting of cancer stem cells." Tumour Biol 31(4): 243-253.
Du, W., et al. (2016). "Kinesin 1 Drives Autolysosome Tubulation." Dev Cell 37(4): 326-336.
Elbadawy, M., et al. (2018). "Development of an Experimental Model for Analyzing Drug Resistance in Colorectal Cancer." Cancers (Basel) 10(6).
Esteller, M. (2007). "Epigenetic gene silencing in cancer: the DNA hypermethylome." Hum Mol Genet 16 Spec No 1: R50-59.
Herbst, A., et al. (2014). "Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling." BMC Genomics 15(1): 74.
Homma, N., et al. (2003). "Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension." Cell 114(2): 229-239.
Huang, R., et al. (2018). "CD133 expression correlates with clinicopathologic features and poor prognosis of colorectal cancer patients: An updated meta-analysis of 37 studies." Medicine (Baltimore) 97(23): e10446.
Imai, T., et al. (2017). "KIF11 Is Required for Spheroid Formation by Oesophageal and Colorectal Cancer Cells." Anticancer Res 37(1): 47-55.
Islam, F., et al. (2015). "Cancer stem cell: fundamental experimental pathological concepts and updates." Exp Mol Pathol 98(2): 184-191.
Jolly, M. K., et al. (2017). "EMT and MET: necessary or permissive for metastasis?" Molecular oncology 11(7): 755-769.
Jones, P. A. and S. B. Baylin (2007). "The epigenomics of cancer." Cell 128(4): 683-692.
Jopling, C. L., et al. (2005). "Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA." Science 309(5740): 1577-1581.
Juiz, N. A., et al. (2018). "Alterations in Placental Gene Expression of Pregnant Women with Chronic Chagas Disease." Am J Pathol 188(6): 1345-1353.
Jun, D. Y., et al. (2017). "Tumor suppressor protein p53-mediated repression of human mitotic centromere-associated kinesin gene expression is exerted via down-regulation of Sp1 level." PLoS One 12(12): e0189698.
Karuna, E. P., et al. (2018). "Identification of a WNT5A-Responsive Degradation Domain in the Kinesin Superfamily Protein KIF26B." Genes (Basel) 9(4).
Kim, J. Y., et al. (2016). " CWP232228 targets liver cancer stem cells through Wnt/beta-catenin signaling: a novel therapeutic approach for liver cancer treatment." Oncotarget 7(15): 20395-20409.
Kim, W.-T. and C. J. Ryu (2017). "Cancer stem cell surface markers on normal stem cells." BMB reports 50(6): 285-298.
Klaus, A. and W. Birchmeier (2008). " Wnt signalling and its impact on development and cancer." Nat Rev Cancer 8(5): 387-398.
Lapouge, G., et al. (2012). "Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness." Embo j 31(24): 4563-4575.
Levy, J. M. M., et al. (2017). "Targeting autophagy in cancer." Nat Rev Cancer 17(9): 528-542.
Li, C., et al. (2007). "Identification of pancreatic cancer stem cells." Cancer Res 67(3): 1030-1037.
Li, X. L., et al. (2015). "P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation." World J Gastroenterol 21(1): 84-93.
Lin, M., et al. (2017). "Decreased expression of miR-193a-3p is associated with poor prognosis in colorectal cancer." Oncology letters 14(1): 1061-1067.
Liu, C. C., et al. (2015). "IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation." Int J Cancer 136(3): 547-559.
Lo, W., et al. (2019). "Immunologic Recognition of a Shared p53 Mutated Neoantigen in a Patient with Metastatic Colorectal Cancer." Cancer Immunol Res 7(4): 534-543.
Maycotte, P., et al. (2015). "Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion." Molecular cancer research : MCR 13(4): 651-658.
McAfee, Q., et al. (2012). "Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency." Proc Natl Acad Sci U S A 109(21): 8253-8258.
McEvoy, G. K. and P. American Society of Health-System (2008). AHFS Drug information 2008. Bethesda, Md., American Society of Health-System Pharmacists.
Monteleone, N. J., et al. (2019). "miR-21-mediated regulation of 15-hydroxyprostaglandin dehydrogenase in colon cancer." Scientific reports 9(1): 5405-5405.
Morita, R., et al. (2013). "DNA methyltransferase 1 is essential for initiation of the colon cancers." Exp Mol Pathol 94(2): 322-329.
Mrug, M., et al. (2015). "Genetic and Informatic Analyses Implicate Kif12 as a Candidate Gene within the Mpkd2 Locus That Modulates Renal Cystic Disease Severity in the Cys1cpk Mouse." PLoS One 10(8): e0135678.
Muller, P. A., et al. (2013). "Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion." Oncogene 32(10): 1252-1265.
Nakajima, K., et al. (2012). "Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy." Neuron 76(5): 945-961.
Nakata, T. and N. Hirokawa (2003). "Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head." J Cell Biol 162(6): 1045-1055.
Niwa, S. (2015). "Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis." Anat Sci Int 90(1): 1-6.
Ohm, J. E., et al. (2007). "A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing." Nature genetics 39(2): 237-242.
Pan, H., et al. (2013). "Autophagic control of cell 'stemness'." EMBO Mol Med 5(3): 327-331.
Rath, O. and F. Kozielski (2012). "Kinesins and cancer." Nat Rev Cancer 12(8): 527-539.
Setou, M., et al. (2000). "Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport." Science 288(5472): 1796-1802.
Shalli, K., et al. (2005). "Alterations of beta-tubulin isotypes in breast cancer cells resistant to docetaxel." Faseb j 19(10): 1299-1301.
Sicard, F., et al. (2013). "Targeting miR-21 for the therapy of pancreatic cancer." Mol Ther 21(5): 986-994.
Siddiqui, N. and A. Straube (2017). "Intracellular Cargo Transport by Kinesin-3 Motors." Biochemistry (Mosc) 82(7): 803-815.
Simonson, B. and S. Das (2015). "MicroRNA Therapeutics: the Next Magic Bullet?" Mini reviews in medicinal chemistry 15(6): 467-474.
Solomon, H., et al. (2018). "Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers." Oncogene 37(12): 1669-1684.
Sonbol, M. B., et al. (2019). " Therapeutic Targeting Strategies of Cancer Stem Cells in Gastrointestinal Malignancies." Biomedicines 7(1).
Song, X., et al. (2018). "Distinct Diagnostic and Prognostic Values of Kinesin Family Member Genes Expression in Patients with Breast Cancer." Med Sci Monit 24: 9442-9464.
Tan, M. H., et al. (2012). "Specific kinesin expression profiles associated with taxane resistance in basal-like breast cancer." Breast Cancer Res Treat 131(3): 849-858.
Thanikachalam, K. and G. Khan (2019). "Colorectal Cancer and Nutrition." Nutrients 11(1).
Theriault, B. L., et al. (2014). "Transcriptional and epigenetic regulation of KIF14 overexpression in ovarian cancer." PLoS One 9(3): e91540.
Toh, T. B., et al. (2017). "Epigenetics in cancer stem cells." Molecular cancer 16(1): 29-29.
Tolic, I. M., et al. (2019). "Helical Twist and Rotational Forces in the Mitotic Spindle." Biomolecules 9(4).
Tung, M. C., et al. (2015). "Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2." Oncotarget 6(39): 41692-41705.
Unlusoy Aksu, A., et al. (2019). "Recessive Mutations in KIF12 Cause High Gamma-Glutamyltransferase Cholestasis." Hepatology communications 3(4): 471-477.
Unson, S., et al. (2019). "Cepharanthine combined with 5-fluorouracil inhibits the growth of p53-mutant human colorectal cancer cells." J Asian Nat Prod Res: 1-16.
Vacante, M., et al. (2018). "Biomarkers in colorectal cancer: Current clinical utility and future perspectives." World J Clin Cases 6(15): 869-881.
Van der Jeught, K., et al. (2018). "Drug resistance and new therapies in colorectal cancer." World J Gastroenterol 24(34): 3834-3848.
Vinogradov, S. and X. Wei (2012). "Cancer stem cells and drug resistance: the potential of nanomedicine." Nanomedicine (Lond) 7(4): 597-615.
Vlashi, E. and F. Pajonk (2015). "Cancer stem cells, cancer cell plasticity and radiation therapy." Semin Cancer Biol 31: 28-35.
Wang, Z.-Z., et al. (2018). "KIF14 promotes cell proliferation via activation of Akt and is directly targeted by miR-200c in colorectal cancer." International journal of oncology 53(5): 1939-1952.
Watanabe, T., et al. (2018). "Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer." Int J Clin Oncol 23(1): 1-34.
Wicha, M. S., et al. (2006). "Cancer stem cells: an old idea--a paradigm shift." Cancer Res 66(4): 1883-1890; discussion 1895-1886.
Wu, Y. K. and M. Kengaku (2018). "Dynamic Interaction Between Microtubules and the Nucleus Regulates Nuclear Movement During Neuronal Migration." J Exp Neurosci 12: 1179069518789151.
Yan, W. and X. Chen (2010). "Characterization of functional domains necessary for mutant p53 gain of function." J Biol Chem 285(19): 14229-14238.
Yang, W., et al. (2014). "Antioxidant signaling involving the microtubule motor KIF12 is an intracellular target of nutrition excess in beta cells." Dev Cell 31(2): 202-214.
Yin, X., et al. (2011). "Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels." Neuron 70(2): 310-325.
Yiu, A. J. and C. Y. Yiu (2016). "Biomarkers in Colorectal Cancer." Anticancer Res 36(3): 1093-1102.
Zhang, D., et al. (2016). "Defective autophagy leads to the suppression of stem-like features of CD271+ osteosarcoma cells." Journal of Biomedical Science 23(1): 82.
Zhang, L., et al. (2017). "Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer." Cell Cycle 16(8): 737-745.
Zhao, C., et al. (2009). "Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia." Nature 458: 776.
Zhong, Y., et al. (2019). "Overexpression of KIF18A promotes cell proliferation, inhibits apoptosis, and independently predicts unfavorable prognosis in lung adenocarcinoma." IUBMB Life.
李丹玉 (2017). 大腸癌幹細胞新穎標記之研究. 生命科學系. 台北市, 國立臺灣師範大學. 碩士: 59.