研究生: |
陳胤霖 Chen, Yin-Lin |
---|---|
論文名稱: |
基於CornerNet利用加速度計及陀螺儀達成偵測及辨識手勢之研究 CornerNet based gesture detection and recognition using accelerometer and gyroscope |
指導教授: |
黃文吉
Hwang, Wen-Jyi |
口試委員: | 葉佐任 歐謙敏 黃文吉 |
口試日期: | 2021/08/10 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 手勢辨識 、類神經網路 |
英文關鍵詞: | CornerNet |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101340 |
論文種類: | 學術論文 |
相關次數: | 點閱:113 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代變遷,人工智慧也有著長足的進步,其中一項研究主題便是手勢辨識,手勢辨識根據使用資料,可分為依影像資料為主和依感測器資料為主,而本論文使用的資料為感測器資料。
以往以感測器資料為主的手勢辨識研究中,模型無法自動分離手勢資料與背景資料,需要使用人工方式擷取手勢資料,在實際運用時會降低使用者的體驗感,所以本論文提出了一個解決方法,並設計一個模型使其能自動分離手勢與背景,並將手勢分類。
本論文參考了影像辨識中將物件視為關鍵點的概念,將手勢分為兩個關鍵區間,透過偵測並配對這兩個關鍵區間,以達到自動偵測並分類手勢的效果。
[1] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uWave: Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing, 2009
[2] S. Agrawal, I. Constandache, S. Gaonkar, R. R. Choudhury, K. Cave, and F. DeRuyter. Using mobile phones to write in air. In ACM MobiSys, 2011.
[3] J. Wu, G. Pan, D. Zhang, G. Qi, and S. Li. Gesture recognition with a 3-d accelerometer. UIC 09, 2009, pp. 25–38.
[4] Y.-C. Chu, Y.-J. Jhang, T.-M. Tai, and W.-J. Hwang. Recognition of Hand Gesture Sequences by Accelerometers and Gyroscopes. Applied Sciences, vol. 10, no. 18, pp. 6507, 2020
[5] H. Law and J. Deng. Cornernet: Detecting objects as paired keypoints. ECCV, 2018
[6] X. Zhou, D. Wang, and P. Krähenbühl. Objects as Points. 2019
[7] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. ICCV, 2017
[8] Yuxin Wu and Kaiming He. Group normalization. ECCV, 2018.
[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016
[10] Lee, S.M.; Yoon, S.M.; Cho, H. Human Activity Recognition From Accelerometer Data Using Convolutional Neural Network. In Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea, 13–16 February 2017; pp. 131–134
[11] Tai, T.M.; Jhang, Y.J.; Liao, Z.W.; Teng, K.C.; Hwang, W.J. Sensor-Based Continuous Hand Gesture Recognition by Long Short-Term Memory. IEEE Sens. Lett. 2018, 2, 6000704.
[12] Lefebvre, G.; Berlemont, S.; Mamalet, F.; Garcia, C. Inertial Gesture Recognition with BLSTM-RNN. In Artificial Neural Networks, Springer Series in Bio-/Neuroinformatics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 4, pp. 393–410.
[13] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for object detection. ICCV, 2017.