簡易檢索 / 詳目顯示

研究生: 黃泰淳
Huang, Tai-Chun
論文名稱: 缺氧誘導因子1α在頭部外傷後調節神經新生所扮演之角色
The Roles of Hypoxia-Inducible Factor 1α (HIF-1α) in the Traumatic Brain Injury-Induced Neurogenesis
指導教授: 呂國棟
Lu, Kwok-Tung
楊奕玲
Yang, Yi-Ling
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 148
中文關鍵詞: 頭部外傷內皮血管生長因子缺氧誘導因子絲裂原活化蛋白激酶微小型片段RNA-210雙特異性去磷酸酶6
英文關鍵詞: Trauma brain injury, Vascular endothelial growth factor, Hypoxia inducible factors, Mitogen activated protein kinase, miR-210, Dual-specificity phosphatase 6
DOI URL: http://doi.org/10.6345/NTNU201900845
論文種類: 學術論文
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頭部外傷 (traumatic brain injury, TBI) 是全世界青壯年人口中¬,盛行率和死亡率雙高的意外事故之一。因頭部外傷主要發生在最具有生產力階段的青壯年人口,在頭部外傷病患中約有25% 會造成終身性殘疾並須長期性的照護,因而造成社會或經濟的損失。因此,相關致病機轉和醫療策略的研發極具重要性。我們先前的研究已經證明血管內皮生長因子 (vascular endothelial growth factor, VEGF)調節TBI所引發之神經新生的現象(TBI-induced neurogenesis)是經由活化第二型的VEGF受體 (VEGFR2) 和活化絲裂原活化蛋白激酶 (mitogen activated protein kinase, MAPK) 訊息傳導路徑。前人研究指出缺氧誘導因子(hypoxia inducible factor, HIFs) 在正常狀態細胞中含量較為稀少,但在病理狀態下,如缺血(ischemia) 或缺氧 (hypoxia) 時表現會被誘導大量增加。細胞中的HIFs扮演轉錄因子的角色,會進而誘導多種類型的下游基因之表現,特別是與負責血管增生(angiogenesis)、厭氧反應 (anaerobic)、血管舒張 (vasodilation)、紅血球細胞生成(erythropoiesis)、神經新生 (neurogenesis)。本研究的主要目的為探討HIF-1α在TBI誘導海馬迴內神經新生的角色。
    第一部份的研究結果發現TBI誘導後可以引起VEGF表現和海馬迴內的神經新生。此外,給予HIF-1α的反義股 (antisense) 或專一的抑制劑2ME2 (2-methoxyestradiol)成功地阻斷了TBI誘導海馬迴神經新生。TBI的誘導下,與HIF-1α降解有關兩個主要酵素中的脯胺醯基羥化酶 (prolyl hydroxylase, PHD)的表現減少,而低氧誘導因子-1 抑制因子 (factor-inhibiting HIF, FIH) 的表現則無改變,我們推測PHD的減少是促使TBI後海馬迴內的HIF-1α蛋白量增加的主要原因。此外,我們也排除了其他HIF亞型,如HIF-2α和HIF-3α參與此機制的可能性。後續實驗中也證明了HIF-1α可以結合VEGF的啟動子以調控其表現。總結第一部分的實驗結果,我們證明是HIF-1α而非HIF-2α和HIF-3α為激活VEGF在TBI後大量表現的轉錄因子,以及海馬迴中TBI誘導神經新生的主要因子。故在第二份實驗中,我們專注於探討影響TBI後HIF-1α表現量增加後的下游機制,特別是微小型片段RNA(microRNA, miR)是否在過程中扮演重要的角色。
    第二部分的實驗證明了miR-210在缺氧後參與了調節海馬迴中的神經新生。TBI後海馬迴中miR-210表現量迅速提升,約在4小時達到峰值,並在8小時內回復到基礎值。給予miR-210 shRNA不僅可有效的抑制miR-210的表現,同時也減少了TBI所引起的神經新生。此外,西方墨點法的結果顯示TBI誘導後MAPK 訊息傳遞路徑中,三個主要的蛋白質RAF-MEK-ERK的磷酸化均呈現增加,同樣的這些蛋白質的磷酸化情形,在經過miR-210 shRNA預處理後均恢復到正常範圍內。進一步探討TBI造成MAPK磷酸化改變的原因,發現海馬迴內的雙特異性去磷酸酶6 (dual specificity phosphatase 6, DUSP6),還造成RAF-MEK-ERK訊息傳遞去磷酸化的主要磷酸酶,其表現量在TBI誘導後大量減少,我們推論miR-210可能會鍵結DUSP6的mRNA上進而造成其表現量下降。為了驗證上述假設,我們使用慢病毒紅螢光報告系統 (lentivirus report system),該系統可藉由紅色螢光蛋白 (DsRed) 的表現來偵測miR-210是否會結合DUSP6 mRNA。結果發現DeRed蛋白質的表現在TBI前處理LV-DUSP6組中顯著地減少,證明了miR-210確實具有結合DUSP6 mRNA的能力,進而直接調控DUSP6的轉譯作用,使得在TBI後DUSP6減少,導致MAPK的磷酸化增加,進而促進神經新生的產生。
    綜合以上各項結果,我們認為miR-210可當作一個重要的生物指標,可用以探測TBI所引起的腦損傷;而TBI所造成的HIF-1α表現量增加,可進一步促進miR-210的產生,miR-210 可鍵結到DUSP6的mRNA上以減少其表現,進而導致MAPK的磷酸化增加,最終提升了TBI後海馬迴的神經新生。因此藉由增強或延長TBI誘導後HIF-1α的表現,應可作為研發針對TBI傷害的新型治療策略或藥物的重要標的。

    Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity and mortality in youths all over the world. It affects young adults mainly in their most productive stage of life and produces long-lasting disability in 25% of cases, causing an enormous social and economical lost. Our previous studies have evidenced that vascular endothelial growth factor (VEGF) mediated the TBI-induced neurogenesis via VEGF receptor 2 and mitogen activated protein kinase (MAPK) pathway. Hypoxia inducible factors (HIFs) are normally limitedly produced in cells but remarkably up-regulated during some pathological events such as ischemia and hypoxia. HIFs serve as transcription factors and induce the expression of several classes of genes which are related to angiogenesis, anaerobic oxidation, vasodilation, erythropoiesis, and neurogenesis. The present study is aimed to study the possible involvement of HIF-1α in the TBI-induced neurogenesis in hippocampus.
    In part-I experiments, we found that HIF-1α is responsible for the TBI-induced VEGF expression and hippocampal neurogenesis. In addition, either HIF-1α antisense or specific inhibitor 2-methoxyestradiol (2ME2) administration could successfully block the TBI-induced hippocampal neurogenesis. The reduced expression of HIF-prolyl hydroxylases (PHD) but not the factor-inhibiting HIF (FIH) was accounted for the increasing of hippocampal HIF-1α after TBI. Furthermore, we also excluded the possible involvement of other HIF isoforms, such as HIF-2α and HIF-3α. We proved that HIF-1α could bind to the VEGF promoter and regulate its expression. In summary of the part-I experiments, we concluded that HIF-1α is critical to TBI-induced neurogenesis via activating VEGF gene expression.
    In the part-II experiment, some microRNAs (miRs), such as miR-210, were proven to participate in the regulation of neurogenesis after hypoxia. miR-210 is the most consistently and robustly induced miRs under hypoxia. We focused on investigating the involvement of miRs in the increasing of hippocampal HIF-1α and neurogenesis after TBI. The elevated miR-210 expression reached the peak and returned to normal level at around 4 h and 8 h after TBI, respectively. Administration of miR-210 shRNA not only effectively suppressed the overexpression of miR-210, but also attenuated TBI-induced neurogenesis. The western blot results showed the phosphorylation of RAF-MEK-ERK was increased by TBI and the phosphorylation levels of those proteins were returned was restored to the normal range by pre-treated with miR-210 shRNA. Furthermore, the expression of the hippocampal dual-specificity phosphatase 6 (DUSP6), an essential phosphatase of regulating the dephosphorylation of the RAF-MEK-ERK signaling cascade, was reduced after TBI. These results were further verified by using a lentivirus driven reporter system (with a red fluorescence protein, DsRed). We found that the expression of DsRed protein was significantly decreased by pre-treated with LV-DUSP6 after TBI treatment. This result evidenced the miR-210 might be able to regulate the translation of DUSP6 in a direct manner. Conclusively, the present study investigated that miR-210 could serve as an important biomarker for the prognosis of TBI-induced brain damage.
    Conclusively, the present study demonstrated the TBI-induced HIF-1α expression is critical to the generation of miR-210, which in turn will in term to reduce the expression of DUSP6 expression and results in the activation MAPK signal cascade and neurogenesis. Therefore, we suggest that either enhance or prolong the TBI-induced HIF-1α expression might be an effective and promising target for the development of novel therapeutic strategies on the neuroprotection and neural regeneration of the TBI.

    Abstract i 中文摘要 ii Introduction 1 1.1 Traumatic brain injury 1 1.1.1 Classification of traumatic brain injury 2 1.1.2 Pathophysiology of traumatic brain injury 3 1.2 Hypoxia-inducible factor (HIF) 4 1.3 Adult neurogenesis 8 1.4 Vascular endothelial growth factor (VEGF) 10 1.5 The mechanism and function of microRNAs 13 1.6 miR-210 and HIF-1α are coordinately regulated 14 1.7 Mitogen-activated protein kinase (MAPK) 15 1.7.1 The role of the mitogen-activated protein kinase pathway in neural development 16 1.8 Dual-specificity phosphatase (DUSP or MKP) 17 1.8.1 The dual-specificity MKP gene family 18 1.8.2 The introduction of MKP-1/MKP-2 19 1.8.3 The introduction of MKP-3 21 Hypothesis and research aims 24 Materials and Methods 25 2.1 Animals 27 2.2 Traumatic brain injury model and tissue preparation 27 2.3 Administration of oligonucleotides and drugs 27 2.4 Total RNA extraction and reverse transcriptase polymerase chain reaction (RT-PCR) 28 2.5 Protein extraction and quantification assay 32 2.6 Western blotting assay 33 2.7 Chromatin immunoprecipitation (ChIP) 35 2.8 Real-time polymerase chain reaction (qPCR) 38 2.9 Immunofluorescence 38 2.10 MicroRNA expression assay 41 2.11 Plasmid construct 42 2.11.1 The reporter plasmid construct for micro-RNA interaction with target gene 42 2.11.2 Competent cell transformation 43 2.11.3 Transformation of stbl3 competent cells with lentivirus plasmid 43 2.11.4 The preparation of plasmid 44 2.11.5 Plasmid construction for micro-RNA was binding the region of specific and shRNA procedure 45 2.11.6 The restriction enzyme and T4 ligase 48 2.12 The animal hippocampus infected by the lentivirus 50 2.13 The construction of miR-210 shRNA. 50 2.14 Verifying the efficiency of the lentivirus-mediated hippocampal DsRed protein expression of the TurboRFP gene on the control plasmid PLKO-TRC020. 54 2.15 Statistical analysis 55 Results 56 3.1.1 The hippocampal hypoxia inducible factor 1 alpha and vascular endothelial growth factor expression were upregulated in the adult rat after TBI. 56 3.1.2 Administration of HIF-1α antisense significantly decreased the TBI-induced HIF-1α and VEGF expression in hippocampus. 57 3.1.3 The possible involvement of other HIF proteins in the TBI-associated hippocampal VEGF upregulation was excluded. 58 3.1.4 Administration of the HIF-1α inhibitor 2-methoxyestradiol significantly attenuated TBI-induced hippocampal HIF-1α and VEGF expression. 59 3.1.5 Administration of 2ME2 inhibited TBI-induced neurogenesis in the hippocampus. 60 3.1.6. The hippocampal oxygen-sensing prolyl hydroxylase domain enzyme expression was attenuated in the TBI animals 60 3.1.7 Chromatin immunoprecipitation (ChIP) confirmed the involvement of HIF-1α in the promoter activation of VEGF after TBI. 61 3.2.1 The expression of microRNA-210 was increased in the hippocampus of TBI-induced adult rats. 62 3.2.2 Binding of HIF-1 on the promoter region of microRNA-210 by ChIP. 63 3.2.3 Lentivirus-mediated expression of miR-210 shRNA significantly suppressed the TBI-induced expression of miR-210 in hippocampus. 63 3.2.4 Lentivirus-mediated expression of miR-210 shRNA significantly attenuated TBI-induced neurogenesis in the dentate gyrus of the hippocampus. 64 3.2.5 The hippocampal RAF/MEK/ERK signaling pathway was attenuated after the suppression of miR-210 by miR-210 shRNA. 65 3.2.6 The TBI-associated downregulation of dual specificity phosphatases 6 could be effectively restored by miR-210 shRNA expression. 67 3.2.7 The interaction of miR-210 and dual specificity phosphatases 6 was evaluated using a lentiviral reporter red fluorescence protein construct. 68 Discussion 71 Part I 71 Part II 80 Figures & Legends 91 Figure 1 91 Figure 2 92 Figure 3 93 Figure 4 94 Figure 5 96 Figure 6 97 Figure 7 98 Figure 8 100 Figure 9 101 Figure 10 102 Figure 11 104 Figure 12 105 Figure 13 106 Figure 14 107 Figure 15 109 Figure 16 110 Figure 17 112 Figure 18 113 Figure 19 114 Figure 20 116 Figure 21 117 References 118 Abbreviations 136 Index 138 Gel electrophoresis buffer 138 Western blotting buffer 139 Chromatin immunoprecipitation (ChIP) 143 miRNA expression assay 146

    Ahmad M K, Abdollah N A, Shafie N H, Yusof N M, & Razak S R A. (2018). Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biology and Medicine, 15(1), 14-28.
    Altman J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135(3509), 1127-1128.
    Altman J. (1963). Autoradiographic investigation of cell proliferation in the brains of rats and cats. The Anatomical Record, 145, 573-591.
    Alvarez-Buylla A, & Lim D A. (2004). For the long run: maintaining germinal niches in the adult brain. Neuron, 41(5), 683-686.
    Anderson J, Sandhir R, Hamilton E S, & Berman N E. (2009). Impaired expression of neuroprotective molecules in the HIF-1alpha pathway following traumatic brain injury in aged mice. Journal of Neurotrauma, 26(9), 1557-1566.
    Araullo M L, Frank J I, Goldenberg F D, & Rosengart A J. (2007). Transient bilateral finger tremor after brain death. Neurology, 68(16), E22.
    Bailey C H, Kandel E R, & Harris K M. (2015). Structural components of synaptic plasticity and memory consolidation. Cold Spring Harbor Perspectives in Biology, 7(7), a021758.
    Barbero S, Bajetto A, Bonavia R, Porcile C, Piccioli P, Pirani P, Ravetti J L, Zona G, Spaziante R, Florio T, & Schettini G. (2002). Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro. Annals of the New York Academy of Sciences, 973, 60-69.
    Barteczek P, Li L, Ernst A S, Bohler L I, Marti H H, & Kunze R. (2017). Neuronal HIF-1alpha and HIF-2alpha deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke. Journal of Cerebral Blood Flow and Metabolism 37(1), 291-306.
    Bartel D P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-233.
    Beaudry K, Langlois M J, Montagne A, Cagnol S, Carrier J C, & Rivard N. (2019). Dual-specificity phosphatase 6 deletion protects the colonic epithelium against inflammation and promotes both proliferation and tumorigenesis. Journal of Cellular Physiology, 234(5), 6731-6745.
    Beitel G J, Tuck S, Greenwald I, & Horvitz H R. (1995). The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway. Genes and Development, 9(24), 3149-3162.
    Bergeron M, Yu A Y, Solway K E, Semenza G L, & Sharp F R. (1999). Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. The European Journal of Neuroscience, 11(12), 4159-4170.
    Bermudez O, Jouandin P, Rottier J, Bourcier C, Pages G, & Gimond C. (2011). Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia. Journal of Cellular Physiology, 226(1), 276-284.
    Bourne J N, & Harris K M. (2008). Balancing structure and function at hippocampal dendritic spines. Annual Review of Neuroscience., 31, 47-67.
    Bracken C P, Fedele A O, Linke S, Balrak W, Lisy K, Whitelaw M L, & Peet D J. (2006). Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. Journal of Chemical Biology, 281(32), 22575-22585.
    Burek M, Konig A, Lang M, Fiedler J, Oerter S, Roewer N, Bohnert M, Thal S C, Blecharz-Lang K G, Woitzik J, Thum T, & Forster C Y. (2019). Hypoxia-induced microRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Translational Stroke Research, 1-12.
    Byts N, Samoylenko A, Woldt H, Ehrenreich H, & Siren A L. (2006). Cell type specific signalling by hematopoietic growth factors in neural cells. Neurochemical Research, 31(10), 1219-1230.
    Camps M, Nichols A, & Arkinstall S. (2000). Dual specificity phosphatases: a gene family for control of MAP kinase function. The FASEB Journal, 14(1), 6-16.
    Cao L, Jiao X, Zuzga D S, Liu Y, Fong D M, Young D, & During M J. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genetics, 36(8), 827-835.
    Caunt C J, Armstrong S P, Rivers C A, Norman M R, & McArdle C A. (2008). Spatiotemporal regulation of ERK2 by dual specificity phosphatases. Journal of Chemical Biology., 283(39), 26612-26623.
    Caunt C J, & Keyse S M. (2013). Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. The FEBS Journal, 280(2), 489-504.
    Cavadas M A, Nguyen L K, & Cheong A. (2013). Hypoxia-inducible factor (HIF) network: insights from mathematical models. Cell Communication and Signaling 11(1), 42-57.
    Chan V, Thurairajah P, & Colantonio A. (2015). Defining pediatric traumatic brain injury using international classification of diseases version 10 codes: a systematic review. BioMed Central Neurology, 15(1), 7-32.
    Chan Y C, Banerjee J, Choi S Y, & Sen C K. (2012). miR-210: the master hypoxamir. Microcirculation, 19(3), 215-223.
    Chao P K, Lu K T, Jhu J Y, Wo Y Y, Huang T C, Ro L S, & Yang Y L. (2012). Indomethacin protects rats from neuronal damage induced by traumatic brain injury and suppresses hippocampal IL-1beta release through the inhibition of Nogo-A expression. Journal of Neuroinflammation, 9, 121-129.
    Chen H F, Chuang H C, & Tan T H. (2019). Regulation of dual-specificity phosphatase (DUSP) ubiquitination and protein stability. International Journal of Molecular Sciences, 20(11), 2668-2684.
    Chen T, Wu Y, Wang Y, Zhu J, Chu H, Kong L, Yin L, & Ma H. (2017). Brain-derived neurotrophic factor Increases synaptic Pprotein levels via the MAPK/ERK signaling pathway and Nrf2/Trx axis following the transplantation of neural stem cells in a rat model of traumatic brain injury. Neurochemical Research, 42(11), 3073-3083.
    Chen X, Liu J, He B, Li Y, Liu S, Wu B, Wang S, Zhang S, Xu X, & Wang J. (2015). Vascular endothelial growth factor (VEGF) regulation by hypoxia inducible factor-1 alpha (HIF1A) starts and peaks during endometrial breakdown, not repair, in a mouse menstrual-like model. Human Reproduction, 30(9), 2160-2170.
    Chen X, Wu H, Chen H, Wang Q, Xie X J, & Shen J. (2019). Astragaloside VI promotes neural stem cell proliferation and enhances neurological function recovery in transient cerebral ischemic injury via activating EGFR/MAPK signaling cascades. Molecular Neurobiology, 56(4), 3053-3067.
    Choi Y S, Cho H Y, Hoyt K R, Naegele J R, & Obrietan K. (2008). IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia, 56(7), 791-800.
    Chow J M, Liu C R, Lin C P, Lee C N, Cheng Y C, Lin S, & Liu H E. (2008). Downregulation of c-Myc determines sensitivity to 2-methoxyestradiol-induced apoptosis in human acute myeloid leukemia. Experimental Hematology, 36(2), 140-148.
    Church D L, Guan K L, & Lambie E J. (1995). Three genes of the MAP kinase cascade, MEK-2, MPK-1/SUR-1 and LET-60 RAS, are required for meiotic cell cycle progression in caenorhabditis elegans. Development, 121(8), 2525-2535.
    Cicchillitti L, Di Stefano V, Isaia E, Crimaldi L, Fasanaro P, Ambrosino V, Antonini A, Capogrossi M C, Gaetano C, Piaggio G, & Martelli F. (2012). Hypoxia-inducible factor 1-alpha induces miR-210 in normoxic differentiating myoblasts. Journal of Chemical Biology, 287(53), 44761-44771.
    Clement T, Salone V, & Rederstorff M. (2015). Dual luciferase gene reporter assays to study miRNA function. Methods in Molecular Biology, 1296, 187-198.
    Corn P G. (2008). Hypoxic regulation of miR-210: shrinking targets expand HIF-1's influence. Cancer Biology and Therapy, 7(2), 265-267.
    Cornell T T, Rodenhouse P, Cai Q, Sun L, & Shanley T P. (2010). Mitogen-activated protein kinase phosphatase 2 regulates the inflammatory response in sepsis. Infection and Immunity., 78(6), 2868-2876.
    Correa S A, & Eales K L. (2012). The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. Journal of Signal Transduction., 2012, 649079-649091.
    Crosby M E, Devlin C M, Glazer P M, Calin G A, & Ivan M. (2009). Emerging roles of microRNAs in the molecular responses to hypoxia. Current Pharmaceutical Design, 15(33), 3861-3866.
    De Francesco E M, Lappano R, Santolla M F, Marsico S, Caruso A, & Maggiolini M. (2013). HIF-1alpha/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Research, 15(4), R64.
    Deng Y, Larrivee B, Zhuang Z W, Atri D, Moraes F, Prahst C, Eichmann A, & Simons M. (2013). Endothelial RAF1/ERK activation regulates arterial morphogenesis. Blood, 121(19), 3988-3996, S3981-3989.
    Dengler V L, Galbraith M, & Espinosa J M. (2014). Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology, 49(1), 1-15.
    Devlin C, Greco S, Martelli F, & Ivan M. (2011). miR-210: more than a silent player in hypoxia. International Union of Biochemistry and Molecular Biology, 63(2), 94-100.
    Dickinson R J, & Keyse S M. (2006). Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 119(Pt 22), 4607-4615.
    Ding J Y, Kreipke C W, Speirs S L, Schafer P, Schafer S, & Rafols J A. (2009). Hypoxia-inducible factor-1alpha signaling in aquaporin upregulation after traumatic brain injury. Neuroscience Letters, 453(1), 68-72.
    Ding L, Zhao L, Chen W, Liu T, Li Z, & Li X. (2015). miR-210, a modulator of hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cell. International Journal of Clinical and Experimental Medicine 8(2), 2299-2307.
    Fasanaro P, Greco S, Lorenzi M, Pescatori M, Brioschi M, Kulshreshtha R, Banfi C, Stubbs A, Calin G A, Ivan M, Capogrossi M C, & Martelli F. (2009). An integrated approach for experimental target identification of hypoxia-induced miR-210. Journal of Chemical Biology, 284(50), 35134-35143.
    Ferlazzo N, Curro M, Giunta M L, Longo D, Rizzo V, Caccamo D, & Ientile R. (2019). Up-regulation of HIF-1alpha is associated with neuroprotective effects of agmatine against rotenone-induced toxicity in differentiated SH-SY5Y cells. Amino Acids, 1-9.
    Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, & Risau W. (1997). HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mechanisms of Development, 63(1), 51-60.
    Geng J, Wang L, Qu M, Song Y, Lin X, Chen Y, Mamtilahun M, Chen S, Zhang Z, Wang Y, & Yang G Y. (2017). Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1alpha. Stem Cell Research and Therapy, 8(1), 163.
    Gotts J E, & Chesselet M F. (2005). Vascular changes in the subventricular zone after distal cortical lesions. Experimental Neurology, 194(1), 139-150.
    Greenberg D A, & Jin K. (2013). Vascular endothelial growth factors (VEGFs) and stroke. Cellular and Molecular Life Sciences, 70(10), 1753-1761.
    Gregory R I, Yan K P, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, & Shiekhattar R. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235-240.
    Hampton-Smith R J, Davenport B A, Nagarajan Y, & Peet D J. (2019). The conservation and functionality of the oxygen-sensing enzyme factor inhibiting HIF (FIH) in non-vertebrates. PLoS One, 14(4), e0216134.
    Han W, Song X, He R, Li T, Cheng L, Xie L, Chen H, & Jiang L. (2017). VEGF regulates hippocampal neurogenesis and reverses cognitive deficits in immature rats after status epilepticus through the VEGF R2 signaling pathway. Epilepsy and Behavior, 68, 159-167.
    Harki J, Sana A, van Noord D, van Diest P J, van der Groep P, Kuipers E J, Moons L M, Biermann K, & Tjwa E T. (2015). Hypoxia-inducible factor 1-alpha in chronic gastrointestinal ischemia. Virchows Archiv, 466(2), 125-132.
    Hasegawa T, Enomoto A, Kato T, Kawai K, Miyamoto R, Jijiwa M, Ichihara M, Ishida M, Asai N, Murakumo Y, Ohara K, Niwa Y, Goto H, & Takahashi M. (2008). Roles of induced expression of MAPK phosphatase-2 in tumor development in RET-MEN2A transgenic mice. Oncogene, 27(43), 5684-5695.
    He M, Lu Y, Xu S, Mao L, Zhang L, Duan W, Liu C, Pi H, Zhang Y, Zhong M, Yu Z, & Zhou Z. (2014). MiRNA-210 modulates a nickel-induced cellular energy metabolism shift by repressing the iron-sulfur cluster assembly proteins ISCU1/2 in Neuro-2a cells. Cell Death and Disease, 5, e1090.
    Heikkila M, Pasanen A, Kivirikko K I, & Myllyharju J. (2011). Roles of the human hypoxia-inducible factor (HIF)-3alpha variants in the hypoxia response. Cellular and Molecular Life Sciences, 68(23), 3885-3901.
    Hirsila M, Koivunen P, Gunzler V, Kivirikko K I, & Myllyharju J. (2003). Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. Journal of Chemical Biology, 278(33), 30772-30780.
    Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K, Poellinger L, & Pahlman S. (2006). Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell, 10(5), 413-423.
    Hou Y, Wang J, & Feng J. (2019). The neuroprotective effects of curcumin are associated with the regulation of the reciprocal function between autophagy and HIF-1alpha in cerebral ischemia-reperfusion injury. Drug Design, Development and Therapy, 13, 1135-1144.
    Hsieh H L, Wang H H, Wu W B, Chu P J, & Yang C M. (2010). Transforming growth factor-beta1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-kappaB pathways. Journal of Neuroinflammation, 7, 88.
    Huang C, & Hales B F. (2012). Effects of exposure to a DNA damaging agent on the hypoxia inducible factors in organogenesis stage mouse limbs. PLoS One, 7(12), e51937.
    Huang X, Ding L, Bennewith K L, Tong R T, Welford S M, Ang K K, Story M, Le Q T, & Giaccia A J. (2009). Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Molecules and Cells, 35(6), 856-867.
    Huang X, Le Q T, & Giaccia A J. (2010). MiR-210--micromanager of the hypoxia pathway. Trends in Molecular Medicine, 16(5), 230-237.
    Huang X, Liao W, Huang Y, Jiang M, Chen J, Wang M, Lin H, Guan S, & Liu J. (2017). Neuroprotective effect of dual specificity phosphatase 6 against glutamate-induced cytotoxicity in mouse hippocampal neurons. Biomedicine and Pharmacotherapy, 91, 385-392.
    Huang X, Zhang X, Zhao D X, Yin J, Hu G, Evans C E, & Zhao Y Y. (2019). Endothelial hypoxia-inducible factor-1alpha is required for vascular repair and resolution of inflammatory lung injury through FOXM1. The American Journal of Pathology, 189(8), 1664-1679.
    Hunter T. (2000). Signaling--2000 and beyond. Cell, 100(1), 113-127.
    Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara J M, Lane W S, & Kaelin W G, Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 292(5516), 464-468.
    Jaakkola P, Mole D R, Tian Y M, Wilson M I, Gielbert J, Gaskell S J, von Kriegsheim A, Hebestreit H F, Mukherji M, Schofield C J, Maxwell P H, Pugh C W, & Ratcliffe P J. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292(5516), 468-472.
    Jessberger S, & Gage F H. (2014). Adult neurogenesis: bridging the gap between mice and humans. Trends in Cell Biology, 24(10), 558-563.
    Jin K, Mao X O, & Greenberg D A. (2006). Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. Journal of Neurobiology, 66(3), 236-242.
    Jin K, Zhu Y, Sun Y, Mao X O, Xie L, & Greenberg D A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. PNAS, 99(18), 11946-11950.
    Kai A K, Chan L K, Lo R C, Lee J M, Wong C C, Wong J C, & Ng I O. (2016). Down-regulation of TIMP2 by HIF-1alpha/miR-210/HIF-3alpha regulatory feedback circuit enhances cancer metastasis in hepatocellular carcinoma. Hepatology, 64(2), 473-487.
    Keyse S M. (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 12(2), 186-192.
    Kidger A M, & Keyse S M. (2016). The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Seminars in Cell and Developmental Biology, 50, 125-132.
    Kim B W, Choi M, Kim Y S, Park H, Lee H R, Yun C O, Kim E J, Choi J S, Kim S, Rhim H, Kaang B K, & Son H. (2008). Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin. Cell Signal, 20(4), 714-725.
    Kim S Y, Han Y M, Oh M, Kim W K, Oh K J, Lee S C, Bae K H, & Han B S. (2015). DUSP4 regulates neuronal differentiation and calcium homeostasis by modulating ERK1/2 phosphorylation. Stem Cells and Development, 24(6), 686-700.
    Kulshreshtha R, Ferracin M, Negrini M, Calin G A, Davuluri R V, & Ivan M. (2007). Regulation of microRNA expression: the hypoxic component. Cell Cycle, 6(12), 1426-1431.
    Lan F, Qin Q, Yu H, & Yue X. (2019). Effect of glycolysis inhibition by miR-448 on glioma radiosensitivity. Journal of Neurosurgery, 1-9.
    Lee J W, Bae S H, Jeong J W, Kim S H, & Kim K W. (2004). Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Experimental and Molecular Medicine, 36(1), 1-12.
    Lee K A, Roth R A, & LaPres J J. (2007). Hypoxia, drug therapy and toxicity. Pharmacology and Therapeutics, 113(2), 229-246.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, & Kim V N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415-419.
    Lei Z, Li B, Yang Z, Fang H, Zhang G M, Feng Z H, & Huang B. (2009). Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One, 4(10), e7629.
    Li J, Wu G, Cao Y, & Hou Z. (2019). Roles of miR-210 in the pathogenesis of pre-eclampsia. Archives of Medical Science, 15(1), 183-190.
    Li L, Saliba P, Reischl S, Marti H H, & Kunze R. (2016). Neuronal deficiency of HIF prolyl 4-hydroxylase 2 in mice improves ischemic stroke recovery in an HIF dependent manner. Neurobiology of Disease, 91, 221-235.
    Li Q, Ford M C, Lavik E B, & Madri J A. (2006). Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. Journal of Neuroscience Research, 84(8), 1656-1668.
    Li X, Newbern J M, Wu Y, Morgan-Smith M, Zhong J, Charron J, & Snider W D. (2012). MEK is a key regulator of gliogenesis in the developing brain. Neuron, 75(6), 1035-1050.
    Li Y, Wu L, Yu M, Yang F, Wu B, Lu S, Tu M, & Xu H. (2018). HIF-1alpha is critical for the activation of notch signaling in neurogenesis during acute epilepsy. Neuroscience, 394, 206-219.
    Liang Z, Chi Y J, Lin G Q, Luo S H, Jiang Q Y, & Chen Y K. (2018). MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. European Review for Medical and Pharmacological Sciences, 22(11), 3485-3492.
    Liao W, Zheng Y, Fang W, Liao S, Xiong Y, Li Y, Xiao S, Zhang X, & Liu J. (2018). Dual specificity phosphatase 6 protects neural stem cells from beta-amyloid-induced cytotoxicity through ERK1/2 inactivation. Biomolecules, 8(4), 181.
    Licht T, Eavri R, Goshen I, Shlomai Y, Mizrahi A, & Keshet E. (2010). VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development, 137(2), 261-271.
    Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, Segal M, Yirmiya R, & Keshet E. (2011). Reversible modulations of neuronal plasticity by VEGF. PNAS, 108(12), 5081-5086.
    Licht T, & Keshet E. (2013). Delineating multiple functions of VEGF-A in the adult brain. Cellular and Molecular Life Sciences, 70(10), 1727-1737.
    Lisman J, & Raghavachari S. (2006). A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Signal Transduction Knowledge Environment, 2006(356), re11.
    Liu C, & Zhang N. (2012). Emerging biotechnological strategies for non-viral antiangiogenic gene therapy. Angiogenesis, 15(4), 521-542.
    Logsdon A F, Lucke-Wold B P, Turner R C, Huber J D, Rosen C L, & Simpkins J W. (2015). Role of microvascular disruption in brain damage from traumatic brain injury. Comprehensive Physiology, 5(3), 1147-1160.
    Lu K T, Huang T C, Tsai Y H, & Yang Y L. (2017). Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. Journal of Neurochemistry, 140(5), 718-727.
    Lu K T, Huang T C, Wang J Y, You Y S, Chou J L, Chan M W, Wo P Y, Amstislavskaya T G, Tikhonova M A, & Yang Y L. (2015). NKCC1 mediates traumatic brain injury-induced hippocampal neurogenesis through CREB phosphorylation and HIF-1alpha expression. European Journal of Physiology, 467(8), 1651-1661.
    Lu K T, Sun C L, Wo P Y, Yen H H, Tang T H, Ng M C, Huang M L, & Yang Y L. (2011). Hippocampal neurogenesis after traumatic brain injury is mediated by vascular endothelial growth factor receptor-2 and the RAF/MEK/ERK cascade. Journal of Neurotrauma, 28(3), 441-450.
    Lu Y, Li Y, Wang Z, Xie S, Wang Q, Lei X, Ruan Y, & Li J. (2019). Downregulation of RGMA by HIF-1A/miR-210-3p axis promotes cell proliferation in oral squamous cell carcinoma. Biomedicine and Pharmacotherapy, 112, 108608.
    Maas A I, Stocchetti N, & Bullock R. (2008). Moderate and severe traumatic brain injury in adults. Lancet Neurol, 7(8), 728-741.
    Mac Donald C L, Johnson A M, Cooper D, Nelson E C, Werner N J, Shimony J S, Snyder A Z, Raichle M E, Witherow J R, Fang R, Flaherty S F, & Brody D L. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. The New England Journal of Medicine, 364(22), 2091-2100.
    Mackenzie F, & Ruhrberg C. (2012). Diverse roles for VEGF-A in the nervous system. Development, 139(8), 1371-1380.
    Marmarou A, Foda M A, van den Brink W, Campbell J, Kita H, & Demetriadou K. (1994). A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. Journal of Neurosurgery, 80(2), 291-300.
    Mattson M P. (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metabolism, 16(6), 706-722.
    McKee A C, & Daneshvar D H. (2015). The neuropathology of traumatic brain injury. Handbook of Clinical Neurology, 127, 45-66.
    Merlin S, & Follenzi A. (2019). Transcriptional targeting and microRNA regulation of lentiviral vectors. Methods and Clinical Development, 12, 223-232.
    Minchenko A, Bauer T, Salceda S, & Caro J. (1994). Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Laboratory Investigation, 71(3), 374-379.
    Moppett I K. (2007). Traumatic brain injury: assessment, resuscitation and early management. British Journal of Anaesthesia, 99(1), 18-31.
    Nallamshetty S, Chan S Y, & Loscalzo J. (2013). Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radical Biology and Medicine, 64, 20-30.
    Nortje J, & Menon D K. (2004). Traumatic brain injury: physiology, mechanisms, and outcome. Current Opinion in Neurology, 17(6), 711-718.
    Nowacka M, & Obuchowicz E. (2013). BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies. Pharmacological Reports 65(3), 535-546.
    Nunez J. (2008). Primary culture of hippocampal neurons from P0 newborn rats. Journal of Visualized Experiments(19), 895-897.
    Ogle M E, Gu X, Espinera A R, & Wei L. (2012). Inhibition of prolyl hydroxylases by dimethyloxaloylglycine after stroke reduces ischemic brain injury and requires hypoxia inducible factor-1alpha. Neurobiology of Disease, 45(2), 733-742.
    Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van Den Bosch L, Cashman N, Fujisawa H, Drost M R, Sciot R, Bruyninckx F, Hicklin D J, Ince C, Gressens P, Lupu F, Plate K H, Robberecht W, Herbert J M, Collen D, & Carmeliet P. (2001). Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genetics, 28(2), 131-138.
    Ostrowski R P, & Zhang J H. (2018). The insights into molecular pathways of hypoxia-inducible factor in the brain. Journal of Neuroscience Research, 1-20.
    Patterson K I, Brummer T, O'Brien P M, & Daly R J. (2009). Dual-specificity phosphatases: critical regulators with diverse cellular targets. Journal of Biochemistry, 418(3), 475-489.
    Pedrazzoli J, Jr., Calafatti S A, Ortiz R A, Dias F E, Deguer M, Mendes F D, Bento A P, Pereira A A, Piovesana H, Ferraz J G, Lerner F, & de Nucci G. (2001). Transfer of clarithromycin to gastric juice is enhanced by omeprazole in helicobacter pylori-infected individuals. Scandinavian Journal of Gastroenterology, 36(12), 1248-1253.
    Perez-Sen R, Queipo M J, Gil-Redondo J C, Ortega F, Gomez-Villafuertes R, Miras-Portugal M T, & Delicado E G. (2019). Dual-specificity phosphatase regulation in neurons and glial cells. International Journal of Molecular Sciences, 20(8), 1999-2022.
    Perkes I, Baguley I J, Nott M T, & Menon D K. (2010). A review of paroxysmal sympathetic hyperactivity after acquired brain injury. Annals of Neurology, 68(2), 126-135.
    Pugh C W, O'Rourke J F, Nagao M, Gleadle J M, & Ratcliffe P J. (1997). Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. Journal of Chemical Biology, 272(17), 11205-11214.
    Quaegebeur A, Segura I, Schmieder R, Verdegem D, Decimo I, Bifari F, Dresselaers T, Eelen G, Ghosh D, Davidson S M, Schoors S, Broekaert D, Cruys B, Govaerts K, De Legher C, Bouche A, Schoonjans L, Ramer M S, Hung G, Bossaert G, Cleveland D W, Himmelreich U, Voets T, Lemmens R, Bennett C F, Robberecht W, De Bock K, Dewerchin M, Ghesquiere B, Fendt S M, & Carmeliet P. (2016). Deletion or inhibition of the oxygen sensor PHD1 protects against ischemic stroke via reprogramming of neuronal metabolism. Cell Metabolism, 23(2), 280-291.
    Queipo M J, Gil-Redondo J C, Morente V, Ortega F, Miras-Portugal M T, Delicado E G, & Perez-Sen R. (2017). P2x7 nucleotide and EGF receptors exert dual modulation of the dual-specificity phosphatase 6 (MKP-3) in granule neurons and astrocytes, contributing to negative feedback on ERK signaling. Frontiers in Molecular Neuroscience, 10, 448.
    Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner D E, Vatner S F, & Abdellatif M. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104(7), 879-886.
    Redell J B, Liu Y, & Dash P K. (2009). Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. Journal of Neuroscience Research, 87(6), 1435-1448.
    Ricker J L, Chen Z, Yang X P, Pribluda V S, Swartz G M, & Van Waes C. (2004). 2-methoxyestradiol inhibits hypoxia-inducible factor 1alpha, tumor growth, and angiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma. Clinical Cancer Research, 10(24), 8665-8673.
    Ruiz de Almodovar C, Coulon C, Salin P A, Knevels E, Chounlamountri N, Poesen K, Hermans K, Lambrechts D, Van Geyte K, Dhondt J, Dresselaers T, Renaud J, Aragones J, Zacchigna S, Geudens I, Gall D, Stroobants S, Mutin M, Dassonville K, Storkebaum E, Jordan B F, Eriksson U, Moons L, D'Hooge R, Haigh J J, Belin M F, Schiffmann S, Van Hecke P, Gallez B, Vinckier S, Chedotal A, Honnorat J, Thomasset N, Carmeliet P, & Meissirel C. (2010). Matrix-binding vascular endothelial growth factor (VEGF) isoforms guide granule cell migration in the cerebellum via VEGF receptor Flk1. Journal of Neuroscience, 30(45), 15052-15066.
    Schoos A, Gabriel C, Knab V M, & Fux D A. (2019). Activation of HIF-1alpha by delta-opioid receptors induces COX-2 expression in breast cancer cells and leads to paracrine activation of vascular endothelial cells. The Journal of Pharmacology and Experimental Therapeutics, 370(2), 1-46.
    Seagroves T N, Ryan H E, Lu H, Wouters B G, Knapp M, Thibault P, Laderoute K, & Johnson R S. (2001). Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Cellular and Molecular Biology, 21(10), 3436-3444.
    Semenza G L. (2001). HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell, 107(1), 1-3.
    Semenza G L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721-732.
    Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka R J, Collawn J F, & Bartoszewski R. (2018). miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis, 21(2), 183-202.
    Shibuya M. (2011). Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer, 2(12), 1097-1105.
    Sieben N L, Oosting J, Flanagan A M, Prat J, Roemen G M, Kolkman-Uljee S M, van Eijk R, Cornelisse C J, Fleuren G J, & van Engeland M. (2005). Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. American Society of Clinical Oncology, 23(29), 7257-7264.
    Slack D N, Seternes O M, Gabrielsen M, & Keyse S M. (2001). Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. Journal of Chemical Biology, 276(19), 16491-16500.
    Smith G A, Fearnley G W, Tomlinson D C, Harrison M A, & Ponnambalam S. (2015). The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis. Bioscience Reports, 35(5), e00253.
    Speer R E, Karuppagounder S S, Basso M, Sleiman S F, Kumar A, Brand D, Smirnova N, Gazaryan I, Khim S J, & Ratan R R. (2013). Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators: From ferroptosis to stroke. Free Radical Biology and Medicine, 62, 26-36.
    Stoll E A. (2014). Advances toward regenerative medicine in the central nervous system: challenges in making stem cell therapy a viable clinical strategy. Molecular and Cellular Therapies, 2, 12.
    Stroka D M, Burkhardt T, Desbaillets I, Wenger R H, Neil D A, Bauer C, Gassmann M, & Candinas D. (2001). HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. Federation of American Societies for Experimental Biology Journal, 15(13), 2445-2453.
    Strowitzki M J, Cummins E P, & Taylor C T. (2019). Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: unique or ubiquitous? Cells, 8(5), 384-406.
    Sun Y, Jin K, Childs J T, Xie L, Mao X O, & Greenberg D A. (2006). Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration. Developmental Biology, 289(2), 329-335.
    Sun Y, Liu W Z, Liu T, Feng X, Yang N, & Zhou H F. (2015). Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptor and Signal Transduction Research, 35(6), 600-604.
    Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H, & Takahashi T. (2008). Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Research, 68(14), 5540-5545.
    Takikawa T, Masamune A, Hamada S, Nakano E, Yoshida N, & Shimosegawa T. (2013). miR-210 regulates the interaction between pancreatic cancer cells and stellate cells. Biochemical and Biophysical Research Communications, 437(3), 433-439.
    Tan K S, Armugam A, Sepramaniam S, Lim K Y, Setyowati K D, Wang C W, & Jeyaseelan K. (2009). Expression profile of microRNAs in young stroke patients. PLoS One, 4(11), e7689.
    Taylor C A, Bell J M, Breiding M J, & Xu L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. Morbidity and Mortality Weekly Report, 66(9), 1-16.
    Theodosiou A, & Ashworth A. (2002). MAP kinase phosphatases. Genome Biology, 3(7), Reviews 3009.
    Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T, Tanaka N, Nakanishi K, Eguchi A, Sunagawa T, & Ochi M. (2014). Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine, 39(14), 1099-1107.
    Venema R C, Venema V J, Eaton D C, & Marrero M B. (1998). Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1. Journal of Chemical Biology, 273(46), 30795-30800.
    Voloboueva L A, Sun X, Xu L, Ouyang Y B, & Giffard R G. (2017). Distinct effects of miR-210 reduction on neurogenesis: increased neuronal survival of inflammation but reduced proliferation associated with mitochondrial enhancement. The Journal of Neuroscience 37(11), 3072-3084.
    Wang G, Wang J J, Fu X L, Guang R, & To S T. (2017). Advances in the targeting of HIF-1alpha and future therapeutic strategies for glioblastoma multiforme (Review). Oncology Reports, 37(2), 657-670.
    Wang H, Lu Y, Huang W, Papoutsakis E T, Fuhrken P, & Eklund E A. (2007). HoxA10 activates transcription of the gene encoding mitogen-activated protein kinase phosphatase 2 (MKP2) in myeloid cells. Journal of Chemical Biology, 282(22), 16164-16176.
    Wang X, Hou Y, Li Q, Li X, Wang W, Ai X, Kuang T, Chen X, Zhang Y, Zhang J, Hu Y, & Meng X. (2019). Rhodiola crenulata attenuates apoptosis and mitochondrial energy metabolism disorder in rats with hypobaric hypoxia-induced brain injury by regulating the HIF-1alpha/microRNA 210/ISCU1/2 (COX10) signaling pathway. Journal of Ethnopharmacology, 241, 111801.
    Wang Z, Tsai L K, Munasinghe J, Leng Y, Fessler E B, Chibane F, Leeds P, & Chuang D M. (2012). Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke, 43(9), 2430-2436.
    Watts M E, Williams S M, Nithianantharajah J, & Claudianos C. (2018). Hypoxia-induced microRNA-210 targets neurodegenerative pathways. Noncoding RNA, 4(2), 10-25.
    Weber J T. (2012). Altered calcium signaling following traumatic brain injury. Frontiers in Pharmacology, 3, 60.
    Wenger R H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. Federation of American Societies for Experimental Biology Journal, 16(10), 1151-1162.
    White P M, Morrison S J, Orimoto K, Kubu C J, Verdi J M, & Anderson D J. (2001). Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron, 29(1), 57-71.
    Wiesener M S, Jurgensen J S, Rosenberger C, Scholze C K, Horstrup J H, Warnecke C, Mandriota S, Bechmann I, Frei U A, Pugh C W, Ratcliffe P J, Bachmann S, Maxwell P H, & Eckardt K U. (2003). Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. Federation of American Societies for Experimental Biology Journal, 17(2), 271-273.
    Xu H, Yang Q, Shen M, Huang X, Dembski M, Gimeno R, Tartaglia L A, Kapeller R, & Wu Z. (2005). Dual specificity MAPK phosphatase 3 activates PEPCK gene transcription and increases gluconeogenesis in rat hepatoma cells. Journal of Chemical Biology, 280(43), 36013-36018.
    Yancopoulos G D, Davis S, Gale N W, Rudge J S, Wiegand S J, & Holash J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407(6801), 242-248.
    Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H, Liu J, Wang Y, Fu Y, & Yang G Y. (2014). MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Therapy, 21(1), 37-43.
    Zhang N, Fu Z, Linke S, Chicher J, Gorman J J, Visk D, Haddad G G, Poellinger L, Peet D J, Powell F, & Johnson R S. (2010). The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metabolism, 11(5), 364-378.
    Zhang Y Y, Wu J W, & Wang Z X. (2011). Mitogen-activated protein kinase (MAPK) phosphatase 3-mediated cross-talk between MAPKs ERK2 and p38alpha. Journal of Chemical Biology, 286(18), 16150-16162.
    Zhang Z, Sun H, Dai H, Walsh R M, Imakura M, Schelter J, Burchard J, Dai X, Chang A N, Diaz R L, Marszalek J R, Bartz S R, Carleton M, Cleary M A, Linsley P S, & Grandori C. (2009). MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle, 8(17), 2756-2768.
    Zhao C, Deng W, & Gage F H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4), 645-660.
    Zsarnovszky A, & Belcher S M. (2004). Spatial, temporal, and cellular distribution of the activated extracellular signal regulated kinases 1 and 2 in the developing and mature rat cerebellum. Brain Research. Developmental Brain Research, 150(2), 199-209.
    衛生福利部. (2017). 106年死因統計結果分析. 衛生福利部.

    下載圖示
    QR CODE