簡易檢索 / 詳目顯示

研究生: 張耀明
Yao-Ming Chang
論文名稱: 人類微核醣核酸、目標基因與同源體之預測
Prediction of Human miRNAs, Targets and Homologs
指導教授: 葉耀明
Yeh, Yao-Ming
施純傑
Shih, Chun-Chieh
學位類別: 博士
Doctor
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 93
中文關鍵詞: 微核醣核酸目標基因微核醣核酸預測目標基因預測同源微核醣核酸微核醣核酸同源序列預測組織特有基因頻繁序列模式
英文關鍵詞: microRNA, target gene, miRNA prediction, target prediction, homologous miRNA, miRNA homolog prediction, tissue-selective genes, frequent pattern
論文種類: 學術論文
相關次數: 點閱:330下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微核醣核酸(microRNAs)是一種長度大約22個鹼基的核醣核酸物質。它可以透過鹼基序列互補的特性抑制特定的目標基因以達到減少蛋白質生成的目的。大部分的人類基因都被發現可能是微核醣核酸的目標基因。許多研究也發現微核醣核酸在生物中扮演非常重要的角色。我們的研究主要著眼於兩個主題:未知的微核醣核酸之預測與微核醣核酸同源序列(homolog)之預測。透過這兩個研究主題我們可以對於微核醣核酸之起源與演化過程有更多的了解進而對相關的問題提出解決方案。
    在第一部分的研究中,我們發展了一個新的微核醣核酸預測方法,有別於先前的研究,此方法不用跨物種保守的資訊。我們先找出在某些組織特有表現的基因(tissue-selective genes),並於這些基因的3’UTR序列中找出頻繁出現的序列模式(frequent motif)。透過這些頻繁序列模式,我們找到許多已知微核醣核酸的目標基因。接著我們更利用這些頻繁序列預測出未知的微核醣核酸。在我們的預測結果中,有一部份也已經透過實驗的證實為真實的微核醣核酸。這樣高成功率的預測也大大地降低實驗所需的時間與成本。
    第二部分的研究中,我們提出了一個新的方法在其他物種當中發掘更多可能是人類微核醣核酸的同源序列。透過成熟微核醣核酸(mature miRNA)序列在其他物種基因組中的搜尋之後,我們接著利用一些微核醣核酸結構與系列上的特性當作過濾條件得到許多之前未知的同源序列。在我們的結果中發現,許多人類的微核醣核酸同源序列在動物的祖先基因組中可能就已經出現。

    MicroRNAs (miRNAs) are small endogenous RNA molecules ~22 nt that target specific mRNAs to reduce the expression or translation. A large proportion of human protein-coding genes have been found that are probably regulated by miRNAs, suggesting that miRNAs play a critical role in a wide variety of biological functions. In this dissertation, we focus on two issues related to miRNA research: novel miRNA prediction and miRNA homolog prediction. We study these two issues from thorough the understanding of miRNA biogenesis and evolutionary characteristics and then propose two effective new approaches to solve biological problems.
    In first work, we developed a method to predict novel human miRNAs and target genes without requiring cross-species conservation. We first identified lowly/moderately expressed tissue-selective genes using EST data and then identified overrepresented motifs of 7 nucleotides in the 3' UTRs of these genes. Using these motifs as potential target sites of miRNAs, we recovered more than two thirds of the known human miRNAs. We then used those motifs that did not match any known human miRNA seed region to infer novel miRNAs. We predicted 36 new human miRNA genes with 44 mature forms and 4 novel alternative mature forms of 2 known miRNA genes when a stringent criterion was used and many more novel miRNAs when a less stringent criterion was used. Some of our results have been experimentally verified with a highly successful rate (8 out of 11) which can definitely reduce much experimental cost and time.
    In second work, we proposed a new search method to discover as more as possible human miRNA homologs in distant species, such as worm, fruit fly, lancelet, and zebrafish. We first searched miRNA homologous candidates in genomes according to a given known mature miRNA. Then, the similar mature candidates were extended to be precursor candidates and checked by filters of both sequence and structural criterions. The precursor candidates that passed all filters were considered as the possible miRNA homologs. In our results, many of human miRNA homologs were found in all four genomes. So, we infer that most human miRNAs may share the common ancestors with worm and fruit fly.

    Chapter 1 Introduction 1 1.1 What are microRNAs 1 1.1.1 History of miRNAs 1 1.1.2 MiRNA biogenesis 2 1.1.3 Principles of miRNA Target Recognition 4 1.1.4 Database of Known miRNA 5 1.2 Motivation 5 1.3 Objectives 7 1.4 Organization of the dissertation 7 Chapter 2 Background 9 2.1 miRNA Prediction 9 2.1.1 Computational Methods 10 2.1.2 Biological Methods 12 2.2 miRNA Target Prediction 13 2.3 Limitations of Previous miRNA and Target Prediction Methods 15 2.4 Gene Expression Profile 16 2.4.1 Expressed Sequence Tag 16 2.4.2 Microarray 17 2.5 Clustering of Known miRNAs 17 2.6 Homologous miRNA Search 18 Chapter 3 miRNA and Target Gene Prediction Using Tissue-Selective Motif 21 3.1 Introduction 21 3.2 Methods 22 3.2.1 Collection of Human Gene Expression Data 22 3.2.2 Identification of Low-Key Tissue-Selective Genes 23 3.2.3 Identification of Tissue-Selective Motifs in 3’UTR 24 3.2.4 Motif Filtering 24 3.2.5 Matching Frequent Motifs to the Seed Region of Known Mature miRNAs 25 3.2.6 Secondary Structure of Potential Novel miRNAs 25 3.3 Results 26 3.3.1 Low-Key Tissue-Selective Genes in Tissues 26 3.3.2 Frequent Tissue-Selective Motifs 28 3.3.3 Predicted Targets of Know miRNAs 29 3.3.4 Predicted Novel miRNAs 32 3.4 Experimental validation of predicted novel miRNAs and their targets 45 3.4.1 Method Designed of Experimental Validation 45 3.4.2 Expression Tests of Predicted Novel miRNAs 46 3.4.3 Functional Validation of Novel miRNAs by Luciferase Assay and Immunoblotting. 48 3.5 Summary 49 Chapter 4 Prediction of Human miRNA Homologs in Distant Species 53 4.1 Introduction 53 4.1.1 Background 53 4.1.2 Difference of Homology Search Between Protein-Coding Genes and miRNAs 54 4.2 Materials and Methods 57 4.2.1. miRNA Reference sets, Genomic Sequences, and Annotations 57 4.2.2 Methods 57 4.3 Results 66 4.3.1 Homologous Candidates of Human miRNAs in Four Species 66 4.3.2 Comparison of Sequence Similarity and Structural Base-Pairing by BBQ Grid Representation 67 4.3.3 New Predicted Human miRNA Homologs in the Four Genomes 72 4.3.4 Biological Supporting Evidences 74 4.4 Discussions and Conclusions 78 4.4.1 Comparison of the Bi-swing Match Method and BLAST 78 4.4.2 Pseudo miRNA and miRNA Evolution 79 4.4.3 MiR-548 Family in Non-Primate Species 79 4.4.4 Conclusions 80 Chapter 5 Conclusions and future works 82 5.1 Contribution to Biology 82 5.2 Contribution to Computer Science 82 5.3 Future works 83 5.3.1 Atypical miRNA Target Site Prediction 83 5.3.2 Plant miRNA Site Prediction 84 Bibliography 87 List of Publications 93

    1. Lau, N.C., et al., An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001. 294(5543): p. 858-62.
    2. Lagos-Quintana, M., et al., Identification of novel genes coding for small expressed RNAs. Science, 2001. 294(5543): p. 853-8.
    3. Lee, R.C. and V. Ambros, An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001. 294(5543): p. 862-4.
    4. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54.
    5. Wightman, B., I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993. 75(5): p. 855-62.
    6. Aukerman, M.J. and H. Sakai, Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 2003. 15(11): p. 2730-41.
    7. Brennecke, J., et al., bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 2003. 113(1): p. 25-36.
    8. Lim, L.P., et al., Vertebrate microRNA genes. Science, 2003. 299(5612): p. 1540.
    9. Lagos-Quintana, M., et al., New microRNAs from mouse and human. Rna, 2003. 9(2): p. 175-9.
    10. Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956): p. 415-9.
    11. Lund, E., et al., Nuclear export of microRNA precursors. Science, 2004. 303(5654): p. 95-8.
    12. Bartel, D.P. and C.Z. Chen, Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet, 2004. 5(5): p. 396-400.
    13. Bushati, N. and S.M. Cohen, microRNA functions. Annu Rev Cell Dev Biol, 2007. 23: p. 175-205.
    14. Brennecke, J., et al., Principles of microRNA-target recognition. PLoS Biol, 2005. 3(3): p. e85.
    15. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): p. 215-33.
    16. Luo, X., et al., Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J Biol Chem, 2008. 283(29): p. 20045-52.
    17. Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006. 34(Database issue): p. D140-4.
    18. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
    19. Feinbaum, R. and V. Ambros, The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol, 1999. 210(1): p. 87-95.
    20. Johnson, C.D., et al., The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res, 2007. 67(16): p. 7713-22.
    21. Welch, C., Y. Chen, and R.L. Stallings, MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene, 2007. 26(34): p. 5017-22.
    22. Poy, M.N., et al., A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004. 432(7014): p. 226-30.
    23. Ruvkun, G., B. Wightman, and I. Ha, The 20 years it took to recognize the importance of tiny RNAs. Cell, 2004. 116(2 Suppl): p. S93-6, 2 p following S96.
    24. Legendre, M., A. Lambert, and D. Gautheret, Profile-based detection of microRNA precursors in animal genomes. Bioinformatics, 2005. 21(7): p. 841-5.
    25. Wang, X., et al., MicroRNA identification based on sequence and structure alignment. Bioinformatics, 2005. 21(18): p. 3610-4.
    26. Artzi, S., A. Kiezun, and N. Shomron, miRNAminer: a tool for homologous microRNA gene search. BMC Bioinformatics, 2008. 9: p. 39.
    27. Lindow, M. and J. Gorodkin, Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol, 2007. 26(5): p. 339-51.
    28. Morin, R.D., et al., Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res, 2008. 18(4): p. 610-21.
    29. Margulies, M., et al., Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005. 437(7057): p. 376-80.
    30. Berezikov, E., et al., Diversity of microRNAs in human and chimpanzee brain. Nat Genet, 2006. 38(12): p. 1375-7.
    31. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 2003. 31(13): p. 3406-15.
    32. Hofacker, I.L., Vienna RNA secondary structure server. Nucleic Acids Res, 2003. 31(13): p. 3429-31.
    33. Bentwich, I., et al., Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 2005. 37(7): p. 766-70.
    34. Friedman, R.C., et al., Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009. 19(1): p. 92-105.
    35. Ruby, J.G., et al., Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res, 2007. 17(12): p. 1850-64.
    36. Stark, A., et al., Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell, 2005. 123(6): p. 1133-46.
    37. Lall, S., et al., A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol, 2006. 16(5): p. 460-71.
    38. Griffiths-Jones, S., et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006. 34: p. D140 - 144.
    39. Betel, D., et al., The microRNA.org resource: targets and expression. Nucleic Acids Res, 2008. 36(Database issue): p. D149-53.
    40. Smalheiser, N.R. and V.I. Torvik, Mammalian microRNAs derived from genomic repeats. Trends Genet, 2005. 21(6): p. 322-6.
    41. Hertel, J. and P.F. Stadler, Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics, 2006. 22(14): p. e197-202.
    42. Lindow, M., et al., Intragenomic matching reveals a huge potential for miRNA-mediated regulation in plants. PLoS Comput Biol, 2007. 3(11): p. e238.
    43. Pfeffer, S., et al., Identification of microRNAs of the herpesvirus family. Nat Methods, 2005. 2(4): p. 269-76.
    44. Cummins, J.M., et al., The colorectal microRNAome. Proc Natl Acad Sci U S A, 2006. 103(10): p. 3687-92.
    45. Berezikov, E., E. Cuppen, and R.H. Plasterk, Approaches to microRNA discovery. Nat Genet, 2006. 38 Suppl: p. S2-7.
    46. Kawahara, Y., et al., Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science, 2007. 315(5815): p. 1137-40.
    47. Aravin, A. and T. Tuschl, Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett, 2005. 579(26): p. 5830-40.
    48. Landgraf, P., et al., A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007. 129(7): p. 1401-14.
    49. Rajagopalan, R., et al., A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev, 2006. 20(24): p. 3407-25.
    50. Fahlgren, N., et al., High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE, 2007. 2(2): p. e219.
    51. Kasschau, K.D., et al., Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol, 2007. 5(3): p. e57.
    52. Yao, Y., et al., Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol, 2007. 8(6): p. R96.
    53. Nakano, M., et al., Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res, 2006. 34(Database issue): p. D731-5.
    54. Reinhart, B.J., et al., MicroRNAs in plants. Genes Dev, 2002. 16(13): p. 1616-26.
    55. Pasquinelli, A.E., et al., Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000. 408(6808): p. 86-9.
    56. Reinhart, B.J., et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000. 403(6772): p. 901-6.
    57. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes Dev, 2004. 18(5): p. 504-11.
    58. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5.
    59. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
    60. Hobert, O., Common logic of transcription factor and microRNA action. Trends Biochem Sci, 2004. 29(9): p. 462-8.
    61. Xie, X., et al., Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. Nature, 2005. 434(7031): p. 338-45.
    62. Du, T. and P.D. Zamore, microPrimer: the biogenesis and function of microRNA. Development, 2005. 132(21): p. 4645-52.
    63. Saetrom, O., O. Snove, Jr., and P. Saetrom, Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. Rna, 2005. 11(7): p. 995-1003.
    64. Kim, S. A Kernel Method for MicroRNA Target Prediction Using Sensible Data and Position-Based Features. in Computational Intelligence in Bioinformatics and Computational Biology. In Proceedings of the 2005 IEEE Symposium 1. 2005.
    65. Yan, X., et al., Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett, 2007. 581(8): p. 1587-93.
    66. Thadani, R. and M.T. Tammi, MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics, 2006. 7 Suppl 5: p. S20.
    67. Miranda, K.C., et al., A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell, 2006. 126(6): p. 1203-17.
    68. Yousef, M., et al., Naive Bayes for microRNA target predictions--machine learning for microRNA targets. Bioinformatics, 2007. 23(22): p. 2987-92.
    69. Enright, A.J., et al., MicroRNA targets in Drosophila. Genome Biol, 2003. 5(1): p. R1.
    70. John, B., et al., Human MicroRNA targets. PLoS Biol, 2004. 2(11): p. e363.
    71. Lai, E.C., Predicting and validating microRNA targets. Genome Biol, 2004. 5(9): p. 115.
    72. Adams MD, K.J., Gocayne JD, Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991. 252: p. 1651-1656.
    73. Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995. 270(5235): p. 467-70.
    74. Helen Causton, J.Q., and Alvis Brazma, Microarray Gene Expression Data Analysis: A Beginner's Guide. 1 ed. 2003: Wiley.
    75. Griffiths-Jones, S., The microRNA Registry. Nucleic Acids Res, 2004. 32(Database issue): p. D109-11.
    76. Lai, E.C., Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 2002. 30(4): p. 363-4.
    77. Grun, D., et al., microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol, 2005. 1(1): p. e13.
    78. Ibanez-Ventoso, C., M. Vora, and M. Driscoll, Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS One, 2008. 3(7): p. e2818.
    79. Wang, D., M. Hsieh, and W.H. Li, A general tendency for conservation of protein length across eukaryotic kingdoms. Mol Biol Evol, 2005. 22(1): p. 142-7.
    80. Weber, M.J., New human and mouse microRNA genes found by homology search. Febs J, 2005. 272(1): p. 59-73.
    81. Yue, J., Y. Sheng, and K.E. Orwig, Identification of novel homologous microRNA genes in the rhesus macaque genome. BMC Genomics, 2008. 9: p. 8.
    82. Baev, V., E. Daskalova, and I. Minkov, Computational identification of novel microRNA homologs in the chimpanzee genome. Comput Biol Chem, 2009. 33(1): p. 62-70.
    83. Hammond, S.M., RNAi, microRNAs, and human disease. Cancer Chemother Pharmacol, 2006. 58 Suppl 1: p. s63-8.
    84. Kiriakidou, M., et al., A combined computational-experimental approach predicts human microRNA targets. Genes Dev, 2004. 18(10): p. 1165-78.
    85. Rehmsmeier, M., et al., Fast and effective prediction of microRNA/target duplexes. Rna, 2004. 10(10): p. 1507-17.
    86. Cora, D., et al., Identification of candidate regulatory sequences in mammalian 3' UTRs by statistical analysis of oligonucleotide distributions. BMC Bioinformatics, 2007. 8: p. 174.
    87. Hsiao, L.L., et al., A compendium of gene expression in normal human tissues. Physiol Genomics, 2001. 7(2): p. 97-104.
    88. Megy, K., S. Audic, and J.M. Claverie, Heart-specific genes revealed by expressed sequence tag (EST) sampling. Genome Biol, 2002. 3(12): p. RESEARCH0074.
    89. Misra, J., et al., Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res, 2002. 12(7): p. 1112-20.
    90. Saito-Hisaminato, A., et al., Genome-wide profiling of gene expression in 29 normal human tissues with a cDNA microarray. DNA Res, 2002. 9(2): p. 35-45.
    91. Huminiecki, L., A.T. Lloyd, and K.H. Wolfe, Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases. BMC Genomics, 2003. 4(1): p. 31.
    92. Liang, S., et al., Detecting and profiling tissue-selective genes. Physiol Genomics, 2006. 26(2): p. 158-62.
    93. Bagga, S., et al., Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 2005. 122(4): p. 553-63.
    94. Farh, K.K., et al., The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 2005. 310(5755): p. 1817-21.
    95. Lim, L.P., et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005. 433(7027): p. 769-73.
    96. Sood, P., et al., Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A, 2006. 103(8): p. 2746-51.
    97. Ogasawara, O., et al., BodyMap-Xs: anatomical breakdown of 17 million animal ESTs for cross-species comparison of gene expression. Nucleic Acids Res, 2006. 34(Database issue): p. D628-31.
    98. Glantz, S.A., Primer of Biostatistics. 2002: McGraw-Hill.
    99. Tsai, H.K., et al., Method for identifying transcription factor binding sites in yeast. Bioinformatics, 2006. 22(14): p. 1675-81.
    100. Sandberg, R., et al., Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science, 2008. 320(5883): p. 1643-7.
    101. Zhang, H., J.Y. Lee, and B. Tian, Biased alternative polyadenylation in human tissues. Genome Biol, 2005. 6(12): p. R100.
    102. Griffiths-Jones, S., et al., miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008. 36(Database issue): p. D154-8.
    103. Rajewsky, N., microRNA target predictions in animals. Nat Genet, 2006. 38 Suppl: p. S8-13.
    104. Pedersen, J.S., et al., Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput Biol, 2006. 2(4): p. e33.
    105. Chen, J.F., et al., The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006. 38(2): p. 228-33.
    106. Bussemaker, H.J., H. Li, and E.D. Siggia, Regulatory element detection using correlation with expression. Nat Genet, 2001. 27(2): p. 167-71.
    107. Lewis, B.P., et al., Prediction of mammalian microRNA targets. Cell, 2003. 115(7): p. 787-98.
    108. Zhang, M.Q., Statistical features of human exons and their flanking regions. Hum Mol Genet, 1998. 7(5): p. 919-32.
    109. Graur, D. and W.H. Li, Fundamentals of molecular evolution. 2nd ed. 1999, Sunderland, MA: Sinauer Associates.
    110. Zuker, M. and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res, 1981. 9(1): p. 133-48.
    111. Hofacker, I.L. and P.F. Stadler, Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics, 2006. 22(10): p. 1172-6.
    112. Piriyapongsa, J. and I.K. Jordan, A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One, 2007. 2(2): p. e203.
    113. Ruby, J.G., et al., Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell, 2006. 127(6): p. 1193-207.
    114. Eyras, E., et al., ESTGenes: alternative splicing from ESTs in Ensembl. Genome Res, 2004. 14(5): p. 976-87.
    115. Rodriguez, A., et al., Identification of mammalian microRNA host genes and transcription units. Genome Res, 2004. 14(10A): p. 1902-10.
    116. Ying, S.Y. and S.L. Lin, Current perspectives in intronic micro RNAs (miRNAs). J Biomed Sci, 2006. 13(1): p. 5-15.
    117. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.
    118. Jones-Rhoades, M.W., D.P. Bartel, and B. Bartel, MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 2006. 57: p. 19-53.
    119. Schwab, R., et al., Specific effects of microRNAs on the plant transcriptome. Dev Cell, 2005. 8(4): p. 517-27.
    120. Chen, X., A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004. 303(5666): p. 2022-5.
    121. Jones-Rhoades, M.W. and D.P. Bartel, Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 2004. 14(6): p. 787-99.

    下載圖示
    QR CODE