簡易檢索 / 詳目顯示

研究生: 蔡孟庭
Tsai, Meng-Ting
論文名稱: 摻雜對量子點發光二極體之影響
The Influence of Doping on Quantum Dot Light Emitting Diodes
指導教授: 趙宇強
Chao, Yu-Chiang
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 59
DOI URL: http://doi.org/10.6345/NTNU202001269
論文種類: 學術論文
相關次數: 點閱:220下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用全溶液製程製備量子點發光二極體,並針對其中作為電洞注入層的poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)和作為電洞傳輸層的poly(9-vinylcarbazole) (PVK)進行摻雜。首先,先分別對各自層摻雜,研究單層摻雜對於元件效率的影響,並且從不同材料特性方面做摻雜前後分析比較。接著,研究同時對兩層摻雜。固定其中一層之摻雜濃度為可以得到最高效率的濃度,再去調整另一層的摻雜比例,以瞭解同時對兩層摻雜對元件效率之影響。
    我們所製備的量子點發光二極體元件之材料分別為:ITO作為陽極材料;LiF、Al作為陰極材料;PEDOT:PSS做為電洞注入層;PVK作為電洞傳輸層;ZnO、PEIE作為電子傳輸層;而發光層量子點則使用熱門材料──紅光CdSe。我們在電洞注入層PEDOT:PSS中摻雜不同比例的編號P105分散劑;並且在電洞傳輸層PVK中摻雜TAPC。自兩層的摻雜比例中找到能使元件經過電致發光的元件效率達到最高數值的比例,並從光特質(光致發光譜、吸收光譜和穿透光譜)、表面形貌(AFM原子力顯微鏡)、材料電性改變(電流電壓圖)等方面對摻雜前後做比較分析。
    最後我們從實驗結果分析中得到,在電洞注入層中摻雜P105使得電流密度下降,而在電洞傳輸層摻雜TAPC反而使電流密度上升,然而上升的幅度比PEDOT摻雜造成的下降幅度小,故在最後同時摻雜時整體的電流密度是下降的。而表面形貌也因為摻雜,粗糙度降低。最終我們由實驗可以得到在PEDOT:PSS中摻雜P105以及在PVK中摻雜TAPC確實能夠將量子點發光二極體的量子效率提高。

    In this research work, the quantum dot light-emitting diodes were prepared by all-solution-process and the influences of doping of the hole injection layer and the hole transport layer on the device performance were investigated. First, the influences of doping of the hole injection layer or the hole transport layer were investigated respectively. The properties of the undoped and doped materials were studied. Second, devices with both the doped hole injection layer and the doped hole transport layer were investigated. The doping concentration of the hole injection layer was varied while the one of the hole transport layer was fixed.
    The quantum dot light-emitting diodes were prepared by using ITO as the anode, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as the hole injection layer, poly(9-vinylcarbazole) (PVK) as the hole transport layer, CdSe quantum dots as the emissive layer, ZnO as the electron transport layer, and LiF/Al as the cathode. P105 was doped into PEDOT:PSS, while 1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) was doped into PVK. Photoluminescence spectra, absorption spectra, transmission spectra, atomic force microscope images, current-voltage curves were used to understand the influence of doping. It was found that by carefully control the doping concentration of P105 and TAPC, device performance con be improved.

    中文摘要 i Abstract ii 目錄 iii 圖目錄 v Chapter 1緒論 1 1-1 前言 1 1-2 量子點 2 1-3 發光二極體 3 1-4 研究動機 12 Chapter2 原理 13 2-1 奈米材料 13 2-1-1定義 13 2-1-2材料特性 14 2-2 電致磷光發光 17 2-3 發光二極體 18 2-4 CIE色度座標 20 Chapter3 實驗製程 23 3-1元件製作流程 23 3-1-1元件版面配置圖 23 3-1-3表面清洗 24 3-1-5 PVK:TAPC旋塗成膜 26 3-1-6 QD量子點發光層旋塗成膜 27 3-1-7 ZnO電子傳輸層旋塗成膜 28 3-1-8 PEIE層旋塗成膜 29 3-1-9 陰極蒸鍍 30 3-2元件封裝 31 3-3材料與製程介紹 32 3-3-1 材料介紹 32 3-3-2 ZnO合成 36 3-4儀器簡介 37 Chapter4 研究結果與討論 40 4-1元件結構 40 4-2元件能帶圖 41 4-3摻雜對電洞注入層的影響 42 4-3-1發光二極體 42 4-3-2吸收光譜 44 4-3-3穿透光譜 44 4-3-4表面粗糙度 45 4-4電洞傳輸層摻雜之分析 47 4-4-1摻雜對電洞傳輸層的影響 47 4-4-2吸收光譜 49 4-4-3穿透光譜 49 4-4-4表面粗糙度 50 4-5 PEDOT與PVK同時摻雜對元件之影響 53 Chapter5 結論 55 參考文獻(References) 56

    葉昭佩, 硒化鎘半導體奈米晶體的合成及其在薄膜製備上的應用,國立中正 大學碩士論文, 台灣 (1999)
    [2] 賴炤銘, 李錫隆, 奈米材料的特殊效應與應用, Chemistry, 61, 585 (2003)
    [3] A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, and V.I. Klimov , Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5, 1039 (2005).
    [4] V. Wood, M.J. Panzer, J.E. Halpert, J.M. Caruge, M.G. Bawendi, and V. Bulović, Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. ACS Nano 3, 3581 (2009).
    [5] T.H. Kim, K.S. Cho, E.K. Lee, S.J. Lee, J.Chae, J.W. Kim, D.H. Kim, J.Y. Kwon, G. Amaratunga, S.Y.Lee, B.L. Choi, Y. Kuk, J.M. Kim & K. Kim, Full-colour quantum dot displays fabricated by transfer printing. Nature Photon. 5, 176 (2011).
    [6] L. Kim, P.O. Anikeeva, S.A. Coe-Sullivan, J.S. Steckel, M.G. Bawendi, and V. Bulović Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 4513 (2008).
    [7] P.O. Anikeeva, C.F. Madigan, J.E. Halpert, M.G. Bawendi& Bulović, V. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys. Rev. B 78, 085434 (2008).
    [8] C. Borek ,K. Hanson, P.I. Djurovich Dr., M.E. Thompson Prof., K. Aznavour R. Bau Prof., Y. Sun, S.R. Forrest Prof., J. Brooks Dr., L. Michalski, J.Brown Dr., Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex. Angew. Chem. 46, 1109 (2007).
    [9] J.R. Sommer, R.T. Farley, K.R. Graham, Y. Yang, J.R. Reynolds, J.Xue, and K.S. Schanze, Efficient near-infrared polymer and organic light-emitting diodes based on electrophosphorescence from (tetraphenyltetranaphtho-2,3-porphyrin) platinum(II). ACS Appl. Mater. Interf. 1, 274 (2009).
    [10] Supran, G. J. S. High Efficiency and Brightness Near-Infrared Quantum-Dot LEDs. US patent application no. 61/735,344 (2012).
    [11] C. Borek , K. Hanson , P.I. Djurovich Dr. , M.E. Thompson Prof. , K. Aznavour , R. Bau Prof. , Y. Sun, S.R. Forrest Prof. , J. Brooks Dr. , L. Michalski, J. Brown Dr. , Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex. Angew. Chem. 46, 1109(2007).
    [12] US Congress, Office of Technology Assessment, Who Goes There: Friend or Foe? , U.S. Government Printing Office, OTA-ISC-537 (1993).
    [13] Y.T. Lim, S. Kim, A. Nakayama, N.E. Stott, M.G. Bawendi, J.V. Frangioni, Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imag. 2, 50 (2003).
    [14] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam & B.H. Weigl , Microfluidic diagnostic technologies for global public health. Nature 442, 412 (2006).
    [15] G. Konstantatos, C. Huang, L. Levina , Z. Lu, & E.H. Sargent, Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv. Func. Mater. 15, 1865 (2005).
    [16] E. H. Sargent , Infrared quantum dots. Adv. Mater. 17, 515 (2005).
    [17] K.N. Bourdakos, D.M.N.M. Dissanayake, T. Lutz, S.R.P. Silva, and R.J. Curry, Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device. Appl. Phys. Lett. 92, 153311 (2008).
    [18] J. S. Steckel, S. Coe-Sullivan, V. Bulović, M. G. Bawendi, 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1862 (2003).
    [19] K. R. Choudhury, D. W. Song, F. So, Efficient solution-processed hybrid polymer–nanocrystal near infrared light-emitting devices. Org. Electron. 11, 23 (2010).
    [20] S. Hoogland, V. Sukhovatkin, H. Shukla, J. Clifford, L. Levina, E. H. Sargent, Megahertz-frequency large-area optical modulators at 1.55 μm based on solution-cast colloidal quantum dots. Opt. Express 16, 6683 (2008).
    [21] N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506 (2002).
    [22] L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, F. W. Wise, Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotech. 7, 369 (2012).
    [23] K. Y. Cheng, R. Anthony, U. R. Kortshagen, R. J. Holmes, High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11, 1952 (2011).
    [24] K. Y. Cheng, R. Anthony, U. R. Kortshagen, R. J. Holmes, Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence. Nano Lett. 10, 1154 (2010).
    [25] J. W. Stouwdam, R. A. J. Janssen, Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J. Mater. Chem. 18, 1889 (2008).
    [26] 鍾孟庭, 全無機型鈣鈦礦量子點及其衍生物的合成、鑑定與其在白光發光二極體及量子點增色膜的應用, 國立交通大學應用化學系碩士論文, 台灣 (2017)
    [27] Y. Shirasaki, G. J. Supran, M.G. Bawendi , V. Bulović, Emergence of colloidal quantum-dot light-emitting technologies, Nature Photon. 7, 13 (2012)
    [28] Y. V. Panasiuk, O. E. Raevskaya, O. L. Stroyuk, S. Y. Kuchmiy, V. M. Dzhagan, M. Hietschold, D. R. T. Zahn, Colloidal ZnO nanocrystals in dimethylsulfoxide: a new synthesis, optical, photo- and electroluminescent properties, Nanotech, 25,7 (2014)
    [29] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum dots, Nature, 96 (2014)
    [30] Y. Li, H. Lin, C. Luoa, Y. Wanga, C. Jianga, R. Qia, R. Huanga, J. T. cd ,H. Peng. Aggregation induced red shift emission of phosphorus doped carbon dots. RSC advances, 7,51 (2017)
    [31] 邁克奈科技有限公司http://www.micronami.com/new_page_52.htm
    [32] 友翔實業股份有限公司
    http://www.tw17.com.tw/product_detail.asp?pro_ser=2997
    [33] 湧億有限公司
    http://www.yongyi.com.tw/product_con.php?faid=395&id=385&id1=515
    [34] 德記儀器
    http://www.dgs.com.tw/plisttest2.php?PRODUCT=COPC420D&keyword=awe&keyword=%B9q%BA%CF%A5%5B%BC%F6%C5%CD%A9%D5%BE%B9

    下載圖示
    QR CODE