簡易檢索 / 詳目顯示

研究生: 張云柔
Chang, Yun-Jou
論文名稱: 中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用
Syntheses, Characterizations and Applications of Mesoporous Lithium-Modified and Graphitized Zeolite Nanoparticles
指導教授: 劉沂欣
Liu, Yi-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 103
中文關鍵詞: 中孔洞沸石奈米粒子二氧化碳捕捉儲存中孔洞碳材氧化石墨烯染料分離金屬回收芬頓反應
英文關鍵詞: mesoporous zeolite nanoparticles, CO2 capture, mesoporous carbon, graphene-oxide, dye adsorption, metal recycle, Fenton-like reaction
DOI URL: http://doi.org/10.6345/NTNU201900999
論文種類: 學術論文
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室研發之自組裝合成法,可生成具有中孔及微孔洞結構的沸石奈米粒子。其高比表面積(800-900 m2/g)、規則中孔洞(5-6 nm)、高結晶性所產生之微孔的性質(< 1 nm),可有效提高其水熱穩定性,並應用於空間限制的載體以及催化等用途。透過有機鋰試劑修飾過程,可使奈米粒子具有捕捉二氧化碳的能力,所產生的碳酸鋰被有效限制於在中孔洞內,並達到循環利用的效果。
    透過一步驟的化學氣相沉積反應,並以乙烯氣體做為碳源、直接裂解於沸石表面上,生成單層及數層之氧化石墨烯並維持原中孔洞形貌。經由拉曼光譜、X光光電子能譜、螢光光譜、紫外光-可見光吸收光譜、X光粉末繞射等鑑定,證實其組成結構為中孔洞氧化石墨烯-沸石複合奈米粒子。改質後的奈米粒子,表面可大量吸附有機染料及金屬離子,氧化石墨烯中的自由基並可誘發類芬頓反應,以有效催化有機物之分解。

    Self-assembly synthesis of mesoporous zeolite nanoparticles (MZNs) with high surface area (800-900 m2/g), uniform mesopores (5-6 nm), and crystalline-induced micropores (<1 nm) have been developed for enhanced hydrothermal stability as well as space-confinement substrates toward adsorption and catalysis purposes. Adsorption applications can be conducted by surface-modified MZNs with organolithium reagents. The captured CO2 results in Li2CO3 products, spatially-confined in the mesopores for recycling and reusing purposes.
    Mesoporous graphene-oxide zeolite nanoparticles (MGNs) are synthesized via one-step chemical vapor deposition (CVD) method. Ethylene, the only carbon source, was decomposed at high temperature and then deposited onto MZNs, forming single and few-layer graphene oxide with retention of original mesoporosity. The evidence of graphene oxide layers is revealed by photoluminescence, UV-Vis absorption, Raman, XPS and XRD spectroscopies. Efficient adsorption of R6G and metal ions was due to the high surface area and the graphene-oxide properties in MGNs. The free radicals in MGNs also induce Fenton-like reaction that decomposes organic compounds for catalysis purposes.

    謝誌 I 摘要 II Abstract III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 奈米孔洞材料 1 1.1.1 微孔材料 1 1.1.2 中孔材料 3 1.1.3 具微孔的中孔洞材料 4 1.1.4 孔洞材料之應用 5 1.1.5 孔洞碳材 7 1.2 碳材性質及應用 8 1.2.1 電性應用 9 1.2.2 放光應用 10 1.2.3 吸附應用 11 1.2.4 自由基之應用 12 1.3 研究動機 14 第二章 實驗方法 15 2.1 化學藥品 15 2.2 合成沸石晶種(Beta Zeolite Seeds, BZS) 15 2.3 合成中孔洞沸石奈米粒子 (Mesoporous Zeolitic Nanoparticles, MZNs) 16 2.4 以中孔洞沸石奈米粒子進行鋰修飾 (Li@MZNs) 17 2.5 生長石墨化沸石奈米粒子 (Mesoporous Graphene-Oxide Nanoparticles, MGNs) 17 2.6 孔洞材料之染料吸附 17 2.7 孔洞材料之金屬吸附 18 2.8 MGN自由基之類芬頓反應 18 2.9 實驗與鑑定儀器 18 2.9.1 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 18 2.9.2 高解析穿透式電子顯微鏡(High-Resolution Transmission Electron Microscopy, HRTEM) 18 2.9.3 紫外-可見光光譜儀(UV-Visible Spectrophotometer, UV-Vis) 19 2.9.4 螢光光譜儀(Photoluminescence Spectrophotometer, PL) 20 2.9.5 X光粉末繞射儀(powder X-ray Diffraction, PXRD) 20 2.9.6 元素分析儀(Elemental Analyzer, EA) 21 2.9.7 電子順磁共振光譜儀(Electron Paramagnetic Resonance Spectrometer, EPR) 21 2.9.8 拉曼光譜儀(Raman spectrometer) 22 2.9.9 X光光電子光譜儀(X-ray Photoelectron Spectrometer, XPS) 22 2.9.10 界達電位分析儀(Zeta Potential, ZP) 23 2.9.11 固態核磁共振儀及魔術角度旋轉技術(Solid State NMR, SSNMR;Magic-angle Spinning, MAS) 23 2.9.12 氮氣吸脫附分析儀(BET) 23 2.9.13 低溫陰極螢光系統(Crygenic Cathodoluminescence System, CL) 24 2.9.14 化學氣相沉積法反應爐(CVD) 25 2.9.15 衰減式全反射傅立葉轉換红外線光譜(Attenuated Total Reflection Fourier-Transform Infrared Spectrometer, ATR-FTIR) 25 2.9.16 打錠模具 26 2.9.17 四極探針電性測量台(Electrochemical Workstation) 26 2.9.18 感應耦合電漿放射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometer, ICP-OES) 27 2.9.19 感應耦合電漿質譜分析儀(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 28 2.9.20 超臨界流體層析儀(Supercritical Fluid Chromatography, SFC) 28 第三章 結果與討論 29 3.1 中孔洞沸石奈米粒子介紹 29 3.1.1 孔洞性質 29 3.1.2 合成倍率對孔洞之影響及副產物 31 3.2 鋰修飾MZN之探討 35 3.2.1 不同鋰前驅物做修飾 35 3.2.2 不同溫度之修飾影響 41 3.2.3 不同濃度之修飾影響 43 3.2.4 修飾後材料對二氧化碳捕捉及循環利用 49 3.2.5 二氧化碳捕捉機制 55 3.3 石墨化中孔洞沸石奈米粒子 57 3.3.1 形貌及孔洞性質探討 57 3.3.2 表面碳沉積量 62 3.3.3 表面性質鑑定 64 3.3.4 化學環境探討 68 3.3.5 電子結構及放光效應 71 3.3.6 結構探討 74 3.3.7 導電性質探討 77 3.3.8 中孔洞沸石碳材複合物之生長途徑 81 3.4 孔洞材料作為吸附劑 82 3.4.1 pH值對吸附效果之影響 84 3.4.2 恆溫吸附 85 3.4.3 動力吸附 86 3.4.4 吸附後之染料放光改變 88 3.5碳材中自由基探討 90 3.5.1自由基的產生 90 3.5.2 穩定自由基 91 3.5.3 誘發類芬頓反應 94 第四章 結論 99 參考資料 100

    1. Cundy, C. S.; Cox, P. A., Chem. Rev. 2003, 103, 663.
    2. Zheng, Y.; Li, X.; Dutta, P. K., Sensors 2012, 12, 5170.
    3. Kim, H. S.; Bae, D.; Lim, W. T.; Seff, K., J. Phys. Chem. C 2012, 116, 9009.
    4. Weitkamp, J., Solid State Ion. 2000, 131, 175.
    5. Yaghi, O. M.; Li, G.; Li, H., Nature 1995, 378, 703.
    6. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114, 10834.
    7. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Science 1998, 279, 548.
    8. Pérez-Ramírez, J.; Christensen, C. H.; Egeblad, K.; Christensen, C. H.; Groen, J. C., Chem. Soc. Rev. 2008, 37, 2530.
    9. Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K., Chem. Rev. 2006, 106, 896.
    10. Kao, K.-C.; Mou, C.-Y., Microporous Mesoporous Mater. 2013, 169, 7.
    11. Huang, M. H.; Choudrey, A.; Yang, P., Chem. Commun. 2000, 1063.
    12. Wu, S.-H.; Hung, Y.; Mou, C.-Y., Chem. Commun. 2011, 47, 9972.
    13. Shi, J.; Wang, Y.; Yang, W.; Tang, Y.; Xie, Z., Chem. Soc. Rev. 2015, 44, 8877.
    14. Wang, Y.-W.; Kao, K.-C.; Wang, J.-K.; Mou, C.-Y., J. Phys. Chem. C 2016, 120, 24382.
    15. An, Y.; Fei, H.; Zeng, G.; Ci, L.; Xiong, S.; Feng, J.; Qian, Y., ACS Nano 2018, 12, 4993.
    16. Walton, K. S.; Abney, M. B.; Douglas LeVan, M., Microporous Mesoporous Mater. 2006, 91, 78.
    17. Ridha, F. N.; Yang, Y.; Webley, P. A., Microporous Mesoporous Mater. 2009, 117, 497.
    18. Pan, Y.; Zhang, Y.; Zhou, T.; Louis, B.; O’Hare, D.; Wang, Q., Inorg. Chem. 2017, 56, 7821.
    19. Lozinska, M. M.; Mangano, E.; Mowat, J. P. S.; Shepherd, A. M.; Howe, R. F.; Thompson, S. P.; Parker, J. E.; Brandani, S.; Wright, P. A., J. Am. Chem. Soc. 2012, 134, 17628.
    20. Weinberger, C.; Ren, S.; Hartmann, M.; Wagner, T.; Karaman, D. Ş.; Rosenholm, J. M.; Tiemann, M., ACS Appl. Nano Mater. 2018, 1, 455.
    21. Joo, S. H.; Jun, S.; Ryoo, R., Microporous Mesoporous Mater. 2001, 44-45, 153.
    22. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R., Nature 2001, 412, 169.
    23. Zhang, M.; He, L.; Shi, T.; Zha, R., Chem. Mater. 2018, 30, 7391.
    24. Górka, J.; Jaroniec, M., J. Phys. Chem. C 2010, 114, 6298.
    25. Iijima, S., Nature 1991, 354, 56.
    26. Xiao, J.; Mei, D.; Li, X.; Xu, W.; Wang, D.; Graff, G. L.; Bennett, W. D.; Nie, Z.; Saraf, L. V.; Aksay, I. A.; Liu, J.; Zhang, J.-G., Nano Lett. 2011, 11, 5071.
    27. Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H., Chem. Commun. 2010, 46, 2025.
    28. Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H., Nano Lett. 2011, 11, 2644.
    29. Wu, L.; Yang, J.; Zhou, X.; Zhang, M.; Ren, Y.; Nie, Y., J. Mater. Chem. A 2016, 4, 11381.
    30. Kim, H.; Park, K.-Y.; Hong, J.; Kang, K., Sci. Rep 2014, 4, 5278.
    31. Lee, C.-S.; Yu, S. H.; Kim, T. H., Nanomaterials 2017, 8, 17.
    32. Kafi, M. A.; Paul, A.; Dahiya, R. In Graphene oxide-chitosan based flexible biosensor, 2017 IEEE SENSORS, 29 Oct.-1 Nov. 2017; 2017; pp 1.
    33. Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L., J. Am. Chem. Soc. 2012, 134, 15.
    34. Zheng, W.; Zhang, Y.; Niu, K.; Liu, T.; Bustillo, K.; Ercius, P.; Nordlund, D.; Wu, J.; Zheng, H.; Du, X., Chem. Commun. 2018, 54, 13726.
    35. Yu, C.; Guo, X.; Shen, M.; Shen, B.; Muzzio, M.; Yin, Z.; Li, Q.; Xi, Z.; Li, J.; Seto, C. T.; Sun, S., Angew. Chem. Int. Ed. 2018, 57, 451.
    36. Guo, X.; Yu, C.; Yin, Z.; Sun, S.; Seto, C. T., ChemSusChem 2018, 11, 1617.
    37. Hu, S.-H.; Chen, Y.-W.; Hung, W.-T.; Chen, I. W.; Chen, S.-Y., Adv. Mater. 2012, 24, 1748.
    38. Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B., Chem. Commun. 2011, 47, 6858.
    39. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z., Nano Lett. 2010, 10, 3318.
    40. Wang, Y.; Wang, K.; Zhao, J.; Liu, X.; Bu, J.; Yan, X.; Huang, R., J. Am. Chem. Soc. 2013, 135, 4799.
    41. Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H., J. Am. Chem. Soc. 2011, 133, 6825.
    42. Ren, H.; Kulkarni, D. D.; Kodiyath, R.; Xu, W.; Choi, I.; Tsukruk, V. V., ACS Appl. Mater. Interfaces 2014, 6, 2459.
    43. Sui, Z.-Y.; Cui, Y.; Zhu, J.-H.; Han, B.-H., ACS Appl. Mater. Interfaces 2013, 5, 9172.
    44. Madadrang, C. J.; Kim, H. Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M. L.; Hou, S., ACS Appl. Mater. Interfaces 2012, 4, 1186.
    45. Sun, D. T.; Peng, L.; Reeder, W. S.; Moosavi, S. M.; Tiana, D.; Britt, D. K.; Oveisi, E.; Queen, W. L., ACS Cent. Sci. 2018, 4, 349.
    46. Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101, 2921.
    47. Yang, X.; Chen, W.; Huang, J.; Zhou, Y.; Zhu, Y.; Li, C., Sci. Rep 2015, 5, 10632.
    48. Liu, S.-Q.; Xiao, B.; Feng, L.-R.; Zhou, S.-S.; Chen, Z.-G.; Liu, C.-B.; Chen, F.; Wu, Z.-Y.; Xu, N.; Oh, W.-C.; Meng, Z.-D., Carbon 2013, 64, 197.
    49. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H., Chem. Mater. 2018, 30, 8303.
    50. Kao, K.-C.; Tsou, C.-J.; Mou, C.-Y., Chem. Commun. 2012, 48, 3454.
    51. Liu, Y.-H.; Lin, H.-P.; Mou, C.-Y., Langmuir 2004, 20, 3231.
    52. Anwander, R.; Runte, O.; Eppinger, J.; Gerstberger, G.; Herdtweck, E.; Spiegler, M., J. Chem. Soc., Dalton Trans. 1998, 847.
    53. Crozier, A. R.; Schädle, C.; Maichle-Mössmer, C.; Törnroos, K. W.; Anwander, R., Dalton Trans. 2013, 42, 5491.
    54. Chien, C.-T.; Li, S.-S.; Lai, W.-J.; Yeh, Y.-C.; Chen, H.-A.; Chen, I. S.; Chen, L.-C.; Chen, K.-H.; Nemoto, T.; Isoda, S.; Chen, M.; Fujita, T.; Eda, G.; Yamaguchi, H.; Chhowalla, M.; Chen, C.-W., Angew. Chem. Int. Ed. 2012, 51, 6662.
    55. Li, M.; Cushing, S. K.; Zhou, X.; Guo, S.; Wu, N., J. Mater. Chem. 2012, 22, 23374.
    56. Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I., Sci. Rep 2017, 7, 45030.
    57. Perreault, F.; Fonseca de Faria, A.; Elimelech, M., Chem. Soc. Rev. 2015, 44, 5861.
    58. Zhang, L.; Zhuang, H.; Jia, C.-L.; Jiang, X., CrystEngComm 2015, 17, 7070.
    59. Seo, J.; Lee, J.; Jang, A. R.; Choi, Y.; Kim, U.; Shin, H. S.; Park, H., Chem. Mater. 2017, 29, 4202.
    60. Yazdi, R. G.; Iakimov, T.; Yakimova, R., Crystals 2016, 6.
    61. Lasio, B.; Malfatti, L.; Innocenzi, P., J. Photochem. Photobiol 2013, 271, 93.
    62. Kumar, P.; Lemmens, P., RSC Adv. 2015, 5, 91134.
    63. Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X., Science 2019, 364, 1091.

    下載圖示
    QR CODE