研究生: |
林少軒 Shao-Hsuan Lin |
---|---|
論文名稱: |
1,3,5-三(苯咪唑-1-基甲基)-2,4,6-三甲基苯配子與過渡性金屬離子自組裝合成、結構與性質探討 Self-Assembly, Structures and Properties of Metal-Organic Frameworks from 1,3,5-tris(benzimidazoyl-1-ylmethyl)-2,4,6-trimethylbenzene and Transition Metal Ions |
指導教授: |
許貫中
Hsu, Kung-Chung 呂光烈 Lu, Kuang-Lieh |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 138 |
中文關鍵詞: | 1,3,5-三(苯咪唑-1-基甲基)-2,4,6-三甲基苯 、天冬胺酸 、對掌性 、反鐵磁性 、原位反應 、金屬-有機配位聚合物 、自組裝 |
英文關鍵詞: | 1,3,5-tris(benzimidazoyl-1-ylmethyl)-2,4,6-trimethylbenzene, aspartic acid, chirality, antiferromagnetism, in-situ reaction, metal-organic frameworks, self-assembly |
論文種類: | 學術論文 |
相關次數: | 點閱:188 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨為研究1,3,5-tris(benzimidazoyl-1-ylmethyl)-2,4,6 -trimethylbenzene (TBzIm)含羧酸根有機配子與過渡性金屬離子(CoII, ZnII, MnII, NiII)進行水熱自組裝反應,製備金屬-有機配位聚合物(metal–organic coordination polymers)。
本論文共合成八種配位聚合物,分別為4(H3O)+[Zn8(TBzIm)2(btc)4Cl8]•4H2O (1)、[Zn12(TBzIm)2(bdc)4Cl16]•3H2O (2)、[Co4(TBzIm)4(Hbtc)4] (3)、[Co2(TBzIm)2(bdc)2]•3H2O (4)、[Mn5Cl10(TBzIm)4]•1acetone (5)、[Co2(Fum)2(TBzIm)2]n (6) 、[Ni2(Fum)2(TBzIm)2]n (7)和[Co12(TBzIm)4(D-Cam)12] (8)。論文分成三部分探討,第一部分 (化合物1-4) 為經由柔性TBzIm搭配二價鋅金屬離子(ZnII) 或二價鈷金屬離子(CoII),並混合剛性均苯三甲酸(trimesic acid, H3Btc)、對苯二甲酸(terephthalic acid, H2Bdc)之含羧酸根有機配子進行水熱自組裝反應,形成二維或三維的金屬-有機配位聚合物;第二部分(化合物5)為經由TBzIm與二價錳金屬離子(MnII)進行水熱自組裝反應,形成三維金屬-有機配位子結構,該化合物顯現特殊之磁性行為;第三部分 (化合物6-8) 為經由TBzIm搭配二價鈷金屬離子(CoII)或二價鎳金屬離子(NiII),混合天冬胺酸(aspartic acid, Asp)、酒石酸(tartaric acid, Tar)、樟腦酸(camphanic acid, D-cam)等天然含羧酸根有機配子進行水熱自組裝反應,形成掌性金屬-有機配位聚合物。
第一部分的研究中,化合物1-3為二維層狀結構、化合物4為三維網狀結構,TBzIm與剛性含羧酸根有機配位子之立體阻障在結構的自組裝形成過程中,扮演相當重要的角色。第二部分之化合物5為三維網狀結構,由五個二價錳金屬離子(MnII)所形成的金屬中心展現出有趣地反鐵磁性(antiferromagnetic)行為,基態等於S = 15/2,甚為少見。第三部分的研究中,化合物6與7為等結構(isostructure),具掌性之螺旋型超分子結構,在水熱法的過程中天冬胺酸經由原位反應(in-situ reaction)轉換為反丁烯二酸(fumaric acid)。有趣的是若與直接使用反丁烯二酸進行化合物6與7的合成,則產率顯著降低;化合物8則為含有槳舵形(paddle wheel)進構單元(SBU)的掌性超分子結構。在本論文中,由TBzIm所合成的八種配位聚合物皆展現出良好的熱穩定性,其中以化合物3與8最為穩定,耐熱溫度可達480°C。
In this thesis, metal–organic coordination frameworks were prepared by reacting a ligand, 1,3,5-tris(benzimidazoyl-1-ylmethyl)-2,4,6-trimethylbenzene (TBzIm), with transition metal ions (ZnII, CoII, MnII, and NiII) and different carboxylic acids under hydrothermal conditions.
We report eight compounds in this study, 4(H3O)+[Zn8(TBzIm)2(btc)4Cl8]•4H2O (1), [Zn12(TBzIm)2(bdc)4Cl16]•3H2O (2), [Co4(TBzIm)4(Hbtc)4] (3), [Co2(TBzIm)2(bdc)2]•3H2O (4), [Mn5Cl10(TBzIm)4]•1acetone (5), [Co2(Fum)2(TBzIm)2]n (6), [Ni2(Fum)2(TBzIm)2]n (7), and [Co12(TBzIm)4(D-Cam)12] (8). A semi-rigid tripodal ligand, TBzIm, was first reacted with different metal ions and aromatic carboxylic acids (trimesic acid, H3Btc and terephthalic acid, H2Bdc) to afford four compounds (1-4) under hydrothermal conditions. Compound 1 was obtained from the reaction of TBzIm, ZnCl2•4H2O, and H3Btc (H3Btc = 1,3,5-benzenetricarboxylic acid). Compound 2 was produced from the self-assembly of TBzIm, ZnCl2•4H2O, and H2Bdc (H2Bdc = 1,4-benzenedicarboxylic acid). Compound 3 was prepared from TBzIm, Co(SO)4•7H2O, and H3Btc. Compound 4 was obtained by reacting TBzIm, Co(SO)4•7H2O, and H2Bdc. In a second series of experiments, TBzIm was reacted with MnCl2•4H2O to produce compound 5, which exhibits a high spin ground state S = 15/2 and shows antiferromagnetic behavior. In a third series, TBzIm was reacted with different metal salts and several chiral carboxylic acids to produce three chiral compounds (6-8). Compound 6 was obtained when TBzIm, CoCl2•6H2O, and aspartic acid were used. Compound 7 was prepared from TBzIm, NiCl2•6H2O, and aspartic acid. Compound 8 was obtained by reacting TBzIm, CoCl2•6H2O, and D-camphoric acid.
In the first part, compounds 1-3 adopt 2D layered structures and compound 4 has a 3D framework structure. The steric hindrance of TBzIm and aromatic carboxylic acids play important roles in the architectural engineering of the crystals. In the second part, the [Mn5Cl10] coordination core of compound 5 was found to exhibit interesting magnetic behavior and the TBzIm ligand shows a rarely observed conformation. In the third part, the chiral structures of compounds 6 and 7 were generated into helical arrays via an in-situ process. The chiral structure of compound 8 is constructed from three crystallographically independent binuclear carboxylate complexes {Co2(COO)4}, known as “paddle-wheel” types of secondary building units (SBU).
[1] Lehn, J. M. Nobel lecture 1987.
[2] Lehn, J. M. Eur. Rev. 2009, 17, 263.
[3] Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives, Wiley-VCH, 1995.
[4] Tecilla, P.; Dixon, R. P.; Slobodkin, G.; Alavi, D. S.; Waldeck, D. H. and Hamilton, A. D. J. Am. Chem. Soc. 1990, 112, 9408.
[5] Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
[6] Kupplera, R. J.; Timmons, B., D. J.; Fanga, Q. R.; Li, J. R.; Makala, T. A.; Younga, M. D.; Yuana, D.; Zhaoa, D.; Zhuanga, W.; Zhoua, H. C. Coord. Chem. Rev. 2009, 253, 3042.
[7] Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem., Int. Ed. Engl. 2004, 43, 2334.
[8] Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; Keeffe, M. O.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257.
[9] (a) Anthony, R., West Basic of Solid State Chemistry -2ed , Wiley-VCH, 1999. (b) Miessler, G. L.; Tarr, D. A. Inorganic Chemistry -3rd, Pearson Education, Inc., 2004
[10] Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353.
[11] Pardo, E.; Cangussu, D.; Dul, M.; Lescouëzec R.; Herson, P.; Journaux, Y.; Pedroso E. F.; Pereira, C. L. M.; Munoz, M. C.; Ruiz-Garcia, R.; Cano, J.; Amoros, P.; Julve, M.; Lloret, F. Angew. Chem., Int. Ed. Engl. 2008, 47, 4211.
[12] Ding, B.; Yi, L.; Cheng, P.; Liao, D. Z.; Yan, S. P. Inorg. Chem. 2006, 45, 5799.
[13] Miyasaka, H.; Asai, Y.; Motokawa, N.; Kubo, K.; Yamashita, M. Inorg. Chem. 2010, 49, 9116.
[14] Flack, H. D. Helv. Chim. Acta 2003, 86, 905.
[15] Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 27.
[16] Ma, L.; Falkowski, J. M.; Abney, C.; Lin, W. Nature Chem. 2010, 2, 838.
[17] (a) Vaidhyanathan, R.; Bradshaw, D.; Rebilly, J. N.; Barrio, J. P.; Gould, J. A.; Berry, N. G.; Rosseinsky, M. J. Angew. Chem., Int. Ed. Engl. 2006, 45, 6495. (b) Anokhina, E. V.; Go, Y. B.; Lee, Y.; Vogt, T.; Jacobson, A. J. Am. Chem. Soc. 2006, 128, 9957. (c) Barrio, J. P.; Rebilly, J. N.; Carter, B.; Bradshaw, D.; Bacsa, J.; Ganin, A. Y.; Park, H.; Trewin, A.; Vaidhyanathan, R.; Cooper, A. I.; Warren, J. E. ; Rosseinsky, M. J. Chem. Eur. J. 2008, 14, 4521. (d) Jeffrey A. Rood, William C. Boggess, Bruce C. Noll,; Henderson, K. W. J. Am. Chem. Soc. 2007, 129, 13675. (e) Lu, J.; Yu, J. H.; Chen, X. Y.; Cheng, P.; Zhang, X.; Xu, J. Q. Inorg. Chem. 2005, 44, 5978.
[18] (a) Byrne, P,; Lloyd G. O.; Anderson, K. M.; Clarke, N.; Steed, J. W. Chem. Commun. 2008, 3720. (b) Hsu, Y. F.; Hsu, W.; Wu, C. J.; Cheng, P. C.; Yeh, C. W.; Chang, W. J.; Chen, J. D.; Wang, J. C. CrystEngComm 2010, 12, 702. (c) Ezuhara, T.; Endo, K.; Aoyama, Y. J. Am. Chem. Soc. 1999, 121, 3279. (d) Moon, D.; Song, J.; Kim, B. J.; Suh, B. J.; Lah, M. S. Inorg. Chem. 2004, 43, 8230. (e) Han, L.; Hong, M.; Wang, R.; Luo, J.; Lin, Z.; Yuan, D. Chem. Commun. 2003, 2580. (f) Tian, G.; Zhu, G.; Yang, X.; Fang, Q.; Xue, M.; Sun, J.; Wei, Y.; Qiu, S. Chem. Commun. 2005, 1396. (g) Wang, Y. T.; Tong, M. L.; Fan, H. H.; Wang, H. Z.; Chen, X. M. Dalton Trans. 2005, 424. (h) Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. Rev. 1997, 97, 2005. (i) Zangrando, E.; Casanova, M.; Alessio, E. Chem. Rev. 2008, 108, 4979. (k) Siemeling, U.; Scheppelmann, I.; Neumann, B.; Stammler, A.; Stammlerb, H. G.; Frelekc, J. Chem. Commun. 2003, 2236.
[19] Rabenau, A. Angew. Chem., Int. Ed. Engl. 1985, 24, 1026.
[20] Walton, R. I. Chem. Soc. Rev. 2002, 31, 230.
[21] (a) Feller, R. K.; Forster, P. M.; Wudl, F.; Cheetham, A. K. Inorg. Chem. 2007, 46, 8717. (b) Yang, S. Y.; Long, L. S.; Huang, R. B.; Zheng, L. S.; Ng, S. W. Inorg. Chim. Acta 2005, 358, 1882. (c) Xiao, H. P.; Zhu, L. G. Inorg. Chem. Commun. 2006, 9, 1125. (d) Sun, Y. Q.; Zhang, J.; Yang, G. Y. Chem. Commun. 2006, 1947. (e) Peng, M.-X.; Hong, C. G.; Tan, C. K.; Chen, J. C.; Tong, M. L. J. Chem. Crystallogr. 2006, 36, 703. (f) Tang, S. F.; Song, J. L.; Mao, J. G. Eur. J. Inorg. Chem. 2006, 45, 2011. (g) Zhou, X. P.; Li, D.; Wu, T.; Zhang, X. Dalton Trans. 2006, 2435. (h) Han, L.; Bu, X.; Zhang, Q.; Feng, P. Inorg. Chem. 2006, 45, 5736. (i) Wang, Y. T.; Fan, H. H.; Wang, H. Z.; Chen, X. M. Inorg. Chem. 2005, 44, 4148. (j) Li, X.; Cao, R.; Guo, Z.; Wang, Y.; Zhu, X. J. Mol. Struct. 2006, 798, 64. (k) Zhang, J. P.; Lin, Y. Y.; Huang, X. C.; Chen, X. M. Cryst. Growth Des. 2006, 6, 519.
[22] (a) Su, C. Y.; Cai, Y. P.; Chen, C. L.; Zhang, H. X.; Kang, B. S. J. Chem. Soc., Dalton Trans. 2001, 359. (b) Su, C. Y.; Cai, Y. P.; Chen, C. L.; Smith, M. D.; Kaim, W.; zur Loye, H. C. J. Am. Chem. Soc. 2003, 125, 8595.
[23] Wu, J. Y.; Lin, Y. F.; Chuang, C. H.; Tseng, T. W.; Wen, Y. S.; Lu, K. L. Inorg. Chem. 2008, 47, 10349.
[24] Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn, J. V.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349.