簡易檢索 / 詳目顯示

研究生: 鍾佾哲
Chung, Yi-Che
論文名稱: 具等能量密度之精微線切割放電加工電源於工件輪廓精度改善研究
A micro w-EDM power source with equal energy density for the improvement of workpiece contour accuracy
指導教授: 陳順同
Chen, Shun-Tong
口試委員: 趙崇禮
Chao, Chung-Li
蔡俊毅
Tsai, Jyun-Yi
張天立
Chang, Tien-Li
鄭淳護
Cheng, Chun-Hu
陳順同
Chen, Shun-Tong
口試日期: 2022/07/28
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 168
中文關鍵詞: 等能量密度位置同步輸出擺線齒輪高頻等脈衝微放電
英文關鍵詞: equal energy density, position synchronized output(PSO), cycloidal gear, high-frequency ISO-pulsed micro-discharge
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201364
論文種類: 學術論文
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一應用於精微線切割放電加工具「等能量密度」的放電電源,以改善工件轉角處因能量密度過度集中所導致的加工誤差問題。放電能量的過度集中,可能會造成輪廓過切或讓切情形,尺寸精度易發生誤差且輪廓精度失真,造成精微元件缺損。為維持精微工件的輪廓精度,本研究提出一種「位置同步輸出(Position Synchronized Output, PSO)」的技術,CNC控制系統所產生的連續位置訊號,經由元件可程式邏輯閘陣列(Field Programmable Gate Array, FPGA)轉換,以便控制高頻等脈衝微放電的正確輸出距離,達到等能量密度的精微線切割放電加工。實驗以超微粒碳化鎢為材料進行轉角精度加工,結果顯示,在放電電容2000 pF、放電頻率800 kHz、加工進給率0.04 mm/min的加工條件下,當位置同步輸出機能啟動時,以0.03 μm的開啟距離有最顯著的改善效果,其在內、外轉角處的加工誤差分別可從10.22 μm及6.26 μm降至2.77 μm及0.92 μm。本研究以擺線齒形微結構進行加工驗證,擺線齒形微結構之齒厚與齒間的加工誤差皆小於1 μm,證實位置同步輸出機能輔助加工能獲得穩定且高一致的放電能量密度。顯見本研究所開發的「具等能量密度之放電電源」可使放電能量密度隨加工路徑的距離進行均勻化分佈,減少工件材料轉角處被過度熔蝕的現象,維持工件輪廓的完整性及尺寸的精確性。這項研究成果能改善精微元件的形狀精度,值得商業化。

    The purpose of this study is to develop a discharge power source with "equal energy density" applied to the micro w-EDM, so as to improve the machining error caused by the excessive concentration of energy density at the corners of the workpiece. Excessive concentration of discharge energy is likely to cause the workpiece contour either over-cut or under-cut situations, the dimensional accuracy is prone to error and incorrect contouring accuracy resulting in defects of microparts. In order to maintain the contour accuracy of micropart, a "Position Synchronized Output (PSO)" technology, in which the continuous position signal generated by the CNC system is converted by the Field Programmable Gate Array (FPGA) is proposed in this study to control the correct discharge distance of the high-frequency ISO-pulsed micro-discharge, achieving the micro wire-cut discharge technology with the same energy density. The experiment uses ultra-fine tungsten carbide as the material for corner precision machining test. The result show that the most significant improvement effect can be achieved when the PSO function with the distance of 0.03 μm is enabled and under the machining conditions of discharge capacitance of 2,000 pF, discharge frequency of 800 kHz, and machining feed-rate of 0.04 mm/min. The machining errors at the inner and outer corners can be reduced from 10.22 μm and 6.26 μm to 2.77 μm and 0.92 μm, respectively. The cycloid gear microstructure is used for machining verification. Experimental results show that the machining errors of tooth thickness and tooth pitch of the cycloid gear microstructure is all less than 1 μm, and it is proved that the PSO function assisted the machining to obtain stable and high-consistent discharge energy density. It is evident that the discharge power source with "equal energy density" developed in this study can evenly distribute the discharge energy density with the distance of the machining path, reducing the phenomenon of over-cut and under-cut at the corners of the workpiece, which maintains the integrity of the workpiece contour and dimensional accuracy. The research result is worthy of commercialization due to the improvement of form accuracy of micropart.

    目錄 中文摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 ix 圖目錄 xi 符號說明 xx 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1 轉角精度控制 6 1.2.2 精微放電電源 12 1.3 研究動機 19 1.4 研究目的 20 1.5 研究方法 21 第二章 實驗原理 23 2.1 精微放電加工原理 23 2.2精微線切割放電加工原理 24 2.3 位置同步輸出原理 25 2.3.1 定距離觸發模式 26 2.3.2 陣列觸發模式 27 2.3.3 窗口觸發模式 27 2.4 等能量密度放電原理 28 第三章 實驗設備與材料 30 3.1 硬體設備 30 3.1.1 高剛性桌上型龍門四軸精微CNC工具機 30 3.1.2 精微線切割放電加工機構 32 3.1.3 元件可程式邏輯閘陣列(FPGA) 33 3.1.4 微型直流馬達 35 3.2 量測設備 36 3.2.1 掃描式電子顯微鏡 36 3.2.2 光學顯微鏡 36 3.2.3 混合訊號示波器 37 3.2.4 3D雷射掃描式共軛焦顯微鏡 38 3.3 實驗材料 38 3.3.1 微細銅線(電極材料) 38 3.3.2 碳化鎢(工件材料) 39 第四章 等能量密度之放電波形設計 40 4.1 高頻等脈衝微放電電源 41 4.2 位置同步輸出參數控制介面設計 42 4.3 位置同步輸出測試與分析 45 4.4 等能量密度之放電波列實現 52 第五章 等能量密度放電加工實驗 55 5.1 不同放電電容之單軸向PSO機能 56 5.1.1 切割精度比較 56 5.1.2 切割效能比較 59 5.2 不同放電電容之雙軸向PSO機能 63 5.2.1 銳角之切割精度比較 63 5.2.2 銳角之切割效能比較 72 5.2.3 直角之切割精度比較 80 5.2.4 直角之切割效能比較 89 5.2.5 鈍角之切割精度比較 96 5.2.6 鈍角之切割效能比較 105 5.3 不同進給率之雙軸向PSO機能 112 5.3.1 切割精度比較 113 5.3.2 切割效能比較 120 5.4 不同定距離之雙軸向PSO機能 126 5.4.1 切割精度比較 126 5.4.2 切割效能比較 132 5.5 放電能量密度比較 135 5.5.1 放電加工能量定義 135 5.5.2 不同放電電容之放電能量比較 138 5.5.3 不同進給率之放電能量比較 141 5.5.4 不同定距離之放電能量比較 144 第六章 等能量密度加工驗證 147 6.1 擺線齒形 147 6.2 擺線齒形設計 148 6.3 擺線齒形微結構加工 149 6.4 擺線齒形比較與探討 150 第七章 結論與未來展望 157 7.1 結論 157 7.2 研究成果 158 7.3 研究貢獻 158 7.4 未來展望 159 參考文獻 160

    1. L.S. Dalenogare, G.B. Benitez, N.F. Ayala, A.G. Frank, 2018, International Journal of Production Economics, 204, 383-394.
    2. D. Ibarra, J. Ganzarain, J.I. Igartua, 2018, Business model innovation through Industry 4.0: a review, Procedia Manufacturing, 22, 4-10.
    3. 張道宜、劉燕婷、荊柏鈞、黃品維、李昱孝、林欣怡、林祖儀、吳星澄,2019,圖解簡明世界局勢2020年版:全球秩序進入洗牌格局,洞見政治、經濟、社會發展趨勢,思辨明斷大未來!,易博士。
    4. N. Taniguchi, 1974. On the basic concept of ‘nano-technology’. In Proc. Int. Conf. on Production Engineering, Tokyo, Part II.
    5. Grand View Research. 2016-2018. Micromachining Market Size, Share & Trends Analysis Report By Type (Traditional, Non-traditional, Hybrid), By Process (Additive, Subtractive), By Axis, By End Use, By Region, And Segment Forecasts, 2020 – 2027(GVR-4-68038-737-7).
    6. Y. Okazaki, N. Mishima, K. Ashid, 2004, Microfactory—Concept, History, and Developments, Journal of Manufacturing Science and Engineering, 126, 837-844.
    7. S. T. Chen, Z. H. Jiang, 2015, A force controlled grinding-milling technique for quartz-glass micromachining, Journal of Materials Processing Technology, 216, 206-215.
    8. C. R. Friedrich, M. J. Vasile, 1996, Development of the micromilling process for high-aspect-ratio microstructures, Journal of Microelectromechanical Systems, 5, 33-38.
    9. M. Takács, B. Verö, I. Mészáros, 2003, Micromilling of metallic materials, Journal of Materials Processing Technology, 138, 152-155.
    10. D. Cox, G. Newby, H. W. Park, S. Y. Liang, 2004, Performance Evaluation of a Miniaturized Machining Center for Precision Manufacturing, Proceedings ASME International Mechanical Engineering Congress and Exposition, 60431, 503-510.
    11. J. D. Kim, D. S. Kim, 1995, Theoretical analysis of micro-cutting characteristicsin ultra-precision machining, Journal of Materials Processing Technology, 49, 387-398.
    12. J. Chae, S. S. Park, T. Freiheit, 2006, Investigation of micro-cutting operations, International Journal of Machine Tools and Manufacture, 46, 313-332.
    13. P. Fan, M. Zhong, L. Li, T. Huang, H. Zhang, 2013, Rapid fabrication of surface micro/nano structures with enhanced broadband absorption on Cu by picosecond laser, Optics Express, 21, 11628-11637.
    14. F. H. Rajab, D. Whitehead, Z. Liu, L. Li, 2017, Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air, Applied Physics B 123, 282.
    15. H. Meng, J. Liao, Y. Z, Q. Zhang, 2009, Laser micro-processing of cardiovascular stent with fiber laser cutting system, Optics & Laser Technology, 41, 300-302.
    16. L. Li, 2010, The challenges ahead for laser macro, micro, and nano manufacturing, Advances in Laser Materials Processing, 20-39.
    17. C. K. Malek, V. Saile, 2004, Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review, Microelectronics Journal, 35, 131-143.
    18. D. Munchmeyer, W. Ehrfeld, 1987, Accuracy Limits And Potential Applications Of The LIGA Technique In Integrated Optics, SPIE Proceedings, 803, 72-81.
    19. H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, I. Smaglinski, 2000, Polymer waveguide devices with passive pigtailing: an application of LIGA technology, Synthetic Metals, 115, 13-20.
    20. S. J. Chung, H. Hein, T. Hirata, J. Mohr, T. Akashi, 2000, A micro cycloid-gear system fabricated by multi-exposure LIGA technique, Microsystem Technologies, 6, 149-153.
    21. D. T. Pham, S. S. Dimov, S. Bigot, A. Ivanov, K. Popov, 2004, Micro-EDM—recent developments and research issues, Journal of Materials Processing Technology, 149,50-57.
    22. H. S. Lim, Y. S. Wong, M. Rahman, M. K. Edwin Lee, 2003, A study on the machining of high-aspect ratio micro-structures using micro-EDM, Journal of Materials Processing Technology, 140, 318-325.
    23. Y. Y. Hu, D. Zhu, N. S. Qu, Y. B. Zeng, P. M. Ming, 2008, Fabrication of high-aspect-ratio electrode array by combining UV-LIGA with micro electro-discharge machining, Microsystem Technologies, 15, 519-525.
    24. S. T. Chen, C. Y. Chu, 2017, Fabrication and testing of a novel biopotential electrode array, Journal of Materials Processing Tech., 250, 345-356.
    25. 楊士緯,2013,高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究,國立臺灣師範大學機電工程學研究所碩士論文,60-64.
    26. 陳祈宏,2014,高效能精微線切割放電加工電源開發,國立臺灣師範大學碩士論文,146-148.
    27. K. H. Ho, S. T. Newman, S. Rahimifard, R. D. Allen, 2004, State of the art in wire electrical discharge machining (WEDM), International Journal of Machine Tools and Manufacture, 44, 1247-1259.
    28. F. Klocke, D. Lung, T. Nőthe, 2001, Micro contouring by EDM with fine wires, Proceedings of the 13th International Symposium for Electromachining (ISEM-13), 767-779.
    29. C.T. Lin, I-F. Chung, S.Y. Huang, 2001. Improvement of machining accuracy by fuzzy logic at corner parts for wire-EDM, Fuzzy Sets and Systems, 122, 499-511.
    30. 莊宗仁,2001,線切割放電加工隅角粗加工軌跡補償與加工參數調整策略之研究,華梵大學碩士論文,54-71.
    31. J.A. Sanchez, J.L. Rodil, A. Herrero, L.N. Lopez de Lacalle, A. Lamikiz, 2007, On the influence of cutting speed limitation on the accuracy of wire-EDM corner-cutting, Journal of Materials Processing Technology, 182, 574-579.
    32. S.G. Krishna, V. Raju, K. Ankit, P. Shashikumar, 2012, Manufacture of micro sized threads for micro actuator of laser grating mount, The International Journal of Advanced Manufacturing Technology, 61, 1215-1220.
    33. Z. Chen, Y. Huang, Z. Zhang, H. Li, W.Y. Ming, G. Zhang, 2014, An analysis and optimization of the geometrical inaccuracy in WEDM rough corner cutting, The International Journal of Advanced Manufacturing Technology, 74, 917-929.
    34. 陳柏安,2014,微細線切割放電加工對微勾角加工精度與品質之研究,南台科技大學碩士論文,85-139.
    35. G. Selvakumar, K. Bravilin Jiju, S. Sarkar, S. Mitra, 2016, Enhancing die corner accuracy through trim cut in WEDM, The International Journal of Advanced Manufacturing Technology, 83, 791-803.
    36. F. Han, S. Wachi, M. Kunieda, , 2004, Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control, Precision Engineering, 28, 378-385.
    37. R. Casanueva, F.J. Azcondo, C. Brañas, S. Bracho, 2005, Analysis, design and experimental results of a high-frequency power supply for spark erosion, IEEE transactions on power electronics, 20, 361-369.
    38. Y. Sakai, A. Goto, K. Nakamura, K. Hattori, K. Kobayashi, 2007, Improvement of machining accuracy in wire electrical discharge machining, Proceedings of 15th International Symposium on Electromachining, 171-174.
    39. M.T. Yan, Y.T. Liu, 2009, Design, analysis and experimental study of a high-frequency power supply for finish cut of wire-EDM, International Journal of Machine Tools and Manufacture, 49, 793-796.
    40. D.K. Chung, H.S. Shin, B.H. Kim, C.N. Chu, 2011, High frequency micro wire edm for electrolytic corrosion prevention, International Journal Of Precision Engineering And Manufacturing, 12, 1125-1128.
    41. Y. Jiang, W. Zhao, X. Xi, 2012, A study on pulse control for small-hole electrical discharge machining, Journal of Materials Processing Technology, 212, 1463– 1471.
    42. Y.J. Zhang, H.P. Luo, G.X. Liu, Z.N. Guo, 2013, Y.J. Tang, Research on power supply and control system of wedm cutting of stress-notches in fracture splitting processing of connecting rod, Procedia CIRP, 6, 250-254.
    43. M.A. Erawan, A. Yahya, K. Nor Hisham, S. Samion, Z. Abu bakar, T. Andromeda, Power generator of electrical discharge machining (EDM) system, Applied Mechanics and Materials, vol.554, pp.638-642, 2014.
    44. S.T. Chen, C.H. Chen, 2017, Development of a novel micro w-EDM power source with a multipleResistor-Capacitor (mRC) relaxation circuit for machininghigh-melting point, -hardness and -resistance materials, Journal of Materials Processing Technology, 240, 370-381.
    45. 陳世耀,2021,一種用於氧化鎵微結構陣列切割的非等能量雙電阻電容放電電源研製,國立臺灣師範大學碩士論文,53-72.
    46. F. Süli, 2019, New product development, Electronic Enclosures, Housings and Packages, 191-280.
    47. J. Bouquet, L. Hensgen, A. Klink, T. Jacobs, F. Klocke, B. Lauwers, 2014, Fast Production of Gear Prototypes – A Comparison of Technologies, Procedia CIRP, 14, 77-82.
    48. L. L. Alhadeff, D. T. Curtis, M. B. Marshall, T. Slatter, 2018, The Application of Wire Electrical Discharge Machining (WEDM) in the Prototyping of Miniature Brass Gears, Procedia CIRP, 77, 642-645.
    49. S. T. Chen, 2008, Fabrication of high-density micro holes by upward batch micro EDM. Journal of Micromechanics and Microengineering, 18, 8, https://doi.org/10.1088/0960-1317/18/8/085002
    50. S. T. Chen, S. W. Yang, 2017, A high-density, super-high-aspect-ratio microprobe array realized by highfrequency vibration assisted inverse micro w-EDM, Journal of Materials Processing Tech, 250, 144-155.
    51. F. Takeoka, M. Komori, M. Takahashi, A. Kubo, T. Takatsuji, S. Osawa, O. Sato, 2009, Gear checker analysis and evaluation using a virtual gear checker, Measurement Science and Technology, 20, 11, https://doi.org/10.1088/0957-0233/20/4/045104
    52. F. Han, J. Zhang, I. Soichiro, 2007, Corner error simulation of rough cutting in wire EDM, Precision Engineering, 31, 331-336.
    53. M. Y. Ali, A. N. M. Karim, E. Y. T. Adesta, A. F. Ismail, A. A. Abdullah, M. N. Idris, 2010, Comparative study of conventional and micro WEDM based on machining of meso/micro Sized Spur Gear, International Journal of Precision Engineering and Manufacturing, 11, 779-784.
    54. C. So mmer, 2000, Non-traditional machining handbook, Advance Publishing, Inc., 117-124.
    55. T. Masuzawa, 2000, State of the Art of Micromachining, CIRP Annals, 49, 2, 473-488.
    56. L. Raju, S. S. Hiremath, 2016, A State-of-the-art Review on Micro Electro-discharge Machining, Procedia Technology, 25, 1281-1288.
    57. S. M. Alam, M. Rahman, H. S. Lim, 2008, Study of WEDM parameter phenomena for microfabrication, International Journal of Manufacturing Technology and Management, 13, 226-240.
    58. Y. S. Liao, S. T. Chen, C. S. Lin, 2005, Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts, Journal of Micromechanics and Microengineering, 15, 245-253.
    59. S. T. Chen, H. Y. Yang, 2009, Study of an ultrafine w-EDM technique, Journal of micromechanics and microengineering, J. Micromech. Microeng.18 055005.
    60. Aerotech Inc., 2009. Automation solutions for laser processing, medical device manufacturing and life sciences, Pennsylvania USA.
    61. 陳金壽,2012,應用位置同步輸出之觸發控制雷射於銦錫氧化物薄膜為加工,國立台灣科技大學碩士論文,54-64.
    62. Y. C. Lin, L. R. Hwang, C. H. Cheng, P. L. Su, 2008, Effects of electrical discharge energy on machining performance and bending strength of cemented tungsten carbides, Journal of Materials Processing Technology, 206, 491-499.
    63. M. Kiyak, B. E. Aldemir, E. Altan, 2015, Effects of discharge energy density on wear rate and surface roughness in EDM, The International Journal of Advanced Manufacturing Technology, 79, 513-518.
    64. 施勝禹,2016,精微CNC鑽石研磨機開發應用於表面粗糙度量測之單晶鑽實探針製作研究,國立臺灣師範大學碩士論文,58-71.
    65. 陳櫻丹,2022,一種應用於微細線張力控制的氣體式阻尼器設計研究,國立臺灣師範大學碩士論文,41-45.
    66. C. Yilmaz, I. Koyuncu, M. Alcin, M. Tuna, 2019. Artificial neural networks based thermodynamic and economic analysis of a hydrogen production system assisted by geothermal energy on field progra mmable gate array, International Journal of Hydrogen Energy, 44, 33, 17443-17459.
    67. Altera DE0 Board(2020), http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=364
    68. 微型直流馬達,FAULHABER,http://www.faulhaber.com/
    69. 羅聖全,2013,科學基礎研究之重要利器─掃描式電子顯微鏡(SEM),科學研習,52(5),2-4.
    70. JEOL, Scanning Electron Microscope, JSE-6360, http://www.jeol.co.jp/en/
    71. 漢磊精密科技有限公司,光學顯微鏡,http://www.aixon.com.tw/
    72. 混合訊號示波器,Tektronix,http://www.tek.com
    73. 3D Measuring Laser Microscope, OLYMPUS, https://www.olympus-ims.com/en/metrology/ols4000/
    74. G. Rizzoni, “Principle and application of electrical engineering,” The McGraw-Hill Companies, Inc, 2nd edition, 1996.
    75. 黃銅電極(20 µm),TECHNOS株式會社,http://www.bedra.com/
    76. H. J. Scussel, 1992. Friction and wear of cemented carbides, ASM handbook, ASM Int., 18, 795.
    77. S. T. Chen, L. W. Huang, 2021. A micro‑energy w‑edm power source based on high‑frequency spark erosion for making diamond heat‑sink arrays, International Journal of Precision Engineering and Manufacturing-Green Technology, https://doi.org/10.1007/s40684-021-00396-7.
    78. S. T. Chen, L. W. Huang, J. P. Kuo, T. C. Pai, 2020, Development of an original electromagnetic damping-controlled horizontal cutting mechanism for microwire-EDM, Journal of Materials Processing Tech., 278, 116538.
    79. 陳祈宏,2014,高效能精微線切割放電加工電源開發,國立臺灣師範大學碩士論文,77-84.
    80. T. P. Do, P Ziegler, P. Eberhard, 2015, Review on contact simulation of beveloid and cycloid gears and application of a modern approach to treat deformations, Mathematical and Computer Modelling of Dynamical Systems, 21, 359-388.
    81. K. Seweryn, K. Grassmann, M. Ciesielska, T. Rybus, M. Turek, 2013, Optimization of the Robotic Joint Equipped with Epicyloidal Gear and Direct Drive for Space Applications, ESMATS 2013, 25-27.
    82. W. S. Lin, Y. P. Shih, J. J. Lee, 2014, Design of a two-stage cycloidal gear reducer with tooth modifications, Mechanism and Machine Theory, 79, 184-197.

    下載圖示
    QR CODE