簡易檢索 / 詳目顯示

研究生: 溫學賢
Shiue-Shien Weng
論文名稱: 釩氧錯合物催化醣類半縮醛化反應及氯氧鉬錯合物催化過乙醯基醣類之硫醇醣酐化反應之研究
Vanadyl (Ⅳ) Species Catalyzed Acetalization Reaction and Diastereoselective β-Thioglycosylation of Peracetylated Saccharides Catalyzed by Molybdenum Species.
指導教授: 陳建添
Chen, Chien-Tien
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 589
中文關鍵詞: 硫醣苷鍵化半縮醛化不對稱氧化亞柳胺基酸不對稱催化
英文關鍵詞: Thioglycosylation, Peracetylated Saccharide, Asymmetric oxidation, Acetalization, Catalytic reaction
論文種類: 學術論文
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文第一部分我們成功的發展了在室溫下以VO(OTf)2催化醛類與六圓環醣類的縮合催化反應,簡化合成4, 6-O-benzylidene的合成步驟,並且開發出完全以催化方式並以直接的二個連續性步驟,在S-thiocrecol glucopyranoside 的1o醇及三個2o醇選擇性的植入不同的保護基。如此表示我們發展出了簡單合成寡醣構築單元的方法,為催化反應在醣類化學的應用開啟一個先例。
    本論文第二部分我們成功發展以MoO2Cl2催化的新型態的過醯基化醣類的醣酐健生成反應,也是目前為止第一個使用催化量的催化劑應用在此類型反應,依據產物的立體化學 ( β-selective ) 強烈顯示MoO2Cl2催化系統有鄰接基效應,並且我們也成功的連續應用催化形式,以硫醣酐化 ( thioglycosylation )-酯基交換 ( transesterification ) 去保護- 半縮醛化反應 ( acetalization ) 發展出簡易合成寡醣合成單元的核心單體的方法,期待將來可延伸應用在醣類化學的合成上。
    本論文第三部分我們藉由控制在N-salicylidene 衍生的一系類氧釩錯合物苯環C(3) 位置上植入取代基稱成的,3, 5-di-tbutyl-N-salicylidene-Lucinate 62 衍生的氧釩錯合物,成功的區分α-羫基酯類或醯胺衍生物的鏡像異構物,並藉此誘導出高效率及高選擇性的不對稱有氧性氧化反應,而得到了近乎專一性的光學對拆離效果。除了一般的α-羫基酯類或醯胺,以3, 5-dibromo-N-salicylidene 64 衍生的氧釩錯合物,也可以很成功的應用在紫杉醇C(13) 側鏈 ( Taxol C(13) side chain )的光學對離析,並得到與天然物相同絕對立體組態的完全光學活性紫杉醇C(13)側鏈。
    而藉由改變催化劑合成步驟,以鉀鹽 ( K2CO3, KOtBu, KOH ) 取代醋酸鈉 ( NaOAc ) 可得到X-Ray單晶繞射純度以催化劑62 ( 3, 5-di-tBu-N-salicylidene) 氧釩錯合物為骨架的C4-對稱五核金屬簇,其在α-羫基芐基醯胺的不對稱氧化催化活性與催化劑62近乎相同,這也是第一個具有完美結構C4-對稱性多核金屬簇應用在不對稱反應的巨分子。這些掌性氧釩錯合物為空氣、水穩定的催化劑,並且在反應完成後可以經管柱層析分離回收而再利用。因此這種利用氧氣做為共氧化劑並且在室溫條件進行的高效率及高立體專一性反應,實為在環保化學技術 ( greener chemistry ) 及不對稱催化的一大進展。

    Abstract.
    In the first part of this thesis, we have documented the first successful example of direct catalytic acetal formation between aromatic aldehydes with simple as well as functionalized diols derived from monosaccharides by vanadyl triflate. The new protocol is mild (ambient temperature), regio- and chemo-selective. No dehydrating agent or preformed 1,1-dimethoxyacetal reagent is required. Notably, the water-tolerant catalyst can be recovered easily from the aqueous layer. In combination with our developed catalytic acylation and regioselective acetal opening techniques, a handy three-step catalytic protocol has been established for the construction of a functional differentiated thioglycoside serving as a universal oligosaccharide building block. The current and existing versatile vanadyl and oxometallic species-mediated catalyses augur well for their potential applications in carbohydrate chemistry.
    In the second part, we have documented the first successful example of using neutral and water-tolerant MoO2Cl2 as catalytic promoter for thioglycosylation of peracetylated mono and di-saccharides with exclusive diastereocontrols, which benefits from the neighboring acyl or alkenyl group participation. The successful integration of acylation, thioglycosylation, and trans-esterification catalyzed by MoO2Cl2 allow for ready access of 1-thioglycodides in a green sense. Further manipulation can lead to the ultimate universal monosaccharide all resorted to MoO2Cl2 and oxometallic-mediated catalysis, auguring well for their extensive uses in delicate carbohydrate synthesis.
    Finally, a series of chiral vanadyl carboxylates derived from N-Salicylidene-L--amino acids and vanadyl sulfate has been developed. These configurationally well-defined complexes were examined for the kinetic resolution of double- and mono-activated 2o alcohols. The best chiral templates involve the combination of L-tert-leucine and 3,5-di-t-butyl-, 3,5-diphenyl-, or 3,4-dibromo-salicyaldehyde. The resulting vanadyl(V)-methoxide complexes after recrystallization from air-saturated methanol serve as highly enantioselective catalysts for asymmetric aerobic oxidation of -hydroxyl-esters and amides with a diverse array of -, O-, and N-substituents at ambient temperature in toluene. The asymmetric inductions of the oxidation process are in the range of 10 - > 100 in terms of selectivity factors (krel) in most instances. The new aerobic oxidation protocol is also applicable to the kinetic resolution of C-13 taxol side chain with high selectivity factor (krel 35). X-ray crystallographic analysis of an adduct between a given vanadyl complex and N-benzyl-mandelamide allows for probing the stereo-chemical origin of the nearly exclusive asymmetric control in the oxidation process.
    Among the chiral vanadyl complexes, the 3,5-di-tert-butyl analog, the architectural nature of the vanadyl(V) complex highly depends on the base used during the complex-formation event. A pentanuclear C4-symmetric complex was formed when potassium salts were employed instead of the corresponding sodium salts. A central vanadate(V) unit serves to grip four identical monomeric units together, by which a potassium ion cooperated with the vanadate(V) unit to hold the whole structure is sitting on top of the four flanking units through carbonyl coordinations. This complex was subjected to the asymmetric aerobic oxidation of various racemic -hydroxy-esters and amides with excellent selectivity factors. A linear relationship between the ees of the complex and the ees of the recovered optically active substrates indicates the monomeric nature of the active complex in solution.

    目錄 中文摘要 英文摘要 第一章、序論…………………………………………………1 第一節、氧釩錯合物在有機合成及催化反應之應用……………..1 壹、背景 …………………………………………………..1 貳、氧釩錯合物在有機合成及催化之應用……………………2 第二節、氧鉬錯合物在有機合成及催化反應之應用…………….26 壹、背景…………………………………………………....26 貳、烯類金屬合反應………………………………………...27 參、不對稱選位性烯丙基取代反應…………………………..28 肆、轉硫化反應……………………………………………..28 伍、氧鉬錯合物催化之親核性醯基取代反應: 含N, O, S-親核劑之醯基化反應………………………………………………..34 第二章、正四價氧釩錯合物催化半縮醛反應:在醣類化學之應用…37 第一節、前言…………………………………………………..37 壹、背景……………………………………………………..37 貳、半縮醛在醣類化學之應用…………………………..40 第二節、結果與討論:VO(OTf)2催化醣類半縮醛反應及應用…….45 壹、模式化研究:催化劑活性探討及溶劑效應………….….…..46 貳、醣類縮醛化反應之應用及其範圍…………………………48 參、VO(OTf)2在醣類化學之延伸應用:連續性多官能化寡醣構築核心單元之合成……………………………………………...53 第三節、本章結論……………………………………………...57 第三章、鉬氧金屬錯合物催化醣類衍生物異位性硫基取代反應.....59 第一節、前言…………………………………………………...59 壹、背景……………………………………………………...59 貳、硫醣體的合成方法及膛酐鍵生成之立體化學控制…………62 第二節、結果與討論: 二氯二氧鉬氧金屬錯合物催化醣類衍生物異位性硫基取代反應................................................................66 壹、催化劑活性探討及溶劑效應...............................................66 貳、過乙醯醣類硫醇化反應之應用範圍....................................70 參、 MoO2(Cl)2在醣類化學之延伸應用:連續性多官能化寡醣之合成......................................................................................76 第三節、本章結論.......................................................................79 第四章、掌性氧釩錯合物在α-羫基縮酸衍生物不對稱氧化之應用..81 第一節、背景……………………………………………………81 第二節、結果與討論…………………………………………….84 壹、各類型氧釩錯合物在α-羥基酯類不對稱氧化反應之測試及效 應……………………………………………………...84 貳、 轉換扁桃酸酯基及胺基對不對稱氧化效率之影響………...89 參、扁桃酸類似物與α-取代羫基酯類 ( α-hydroxyl esters )在掌性亞柳氧釩錯合物催化不對稱氧化的範圍及延伸應用…………...92 肆、α-取代羫基芐基醯胺在掌性亞柳氧釩錯合物催化不對稱氧化的範圍及延伸應用……………………………………………96 伍、催化劑結構探討:催化劑與芐醯胺扁桃酸生成之過渡狀態類中間體 ( Catalyst-substrate adduct ) X-Ray 結構解析…………100 陸、反應機構探討…………………………………………..105 第三節、N-亞柳安基酸衍生氧釩錯合物之四聚體-五氧化釩 :具特殊結構與不對稱氧化活性之C4-對稱五核混合錯合物………...108 壹、四聚體-五氧化釩金屬簇製備及結構解析...........................108 貳、四聚體-五氧化釩金屬簇在α-羫基縮酸衍生物不對稱氧化之應用……………………………………………………….118 第四節、本章結論......................................................................122 參考文獻...................................................................................124 第五章、實驗步驟及光譜數據...................................................138 第一節、分析儀器....................................................................138 第二節、VO(OTf)2催化醣類半縮醛反應的實驗步驟及光譜數據 .....................................................................................140 2-1 一般步驟.............................................................................140 2-2 VO(OTf)2催化醣類半縮醛反應通用實驗步驟.....................140 2-3 產物光譜數據分析...........................................................141 2-4、化合物38-40合成方法及步驟........................................155 第三節、鉬氧金屬錯合物催化醣類衍生物異位性硫基取代反應反應的實驗步驟及光譜數據.......................................................160 3-1 一般步驟 .......................................................................160 3-2 過乙醯化醣類硫醣酐化反應之一般合成步驟.....................162 3-3硫醣體41a-50光譜數據分析..............................................162 3-4 以MoO2Cl2連續性合成寡醣構築核心單元實驗步驟............173 3-5 雙醣 52合成實驗步驟及光譜數據.....................................175 第四節、掌性氧釩錯合物在α-羫基縮酸衍生物不對稱氧化反應的實驗步驟及光譜數據..............................................................179 4-1 一般步驟.........................................................................179 4-2 掌性氧釩錯合物 53-65合成一般步驟…………………..179 4-3 掌性氧釩錯合物 53-65數據分析.......................................181 4-4 掌性氧釩錯合物催化α-羫基酯或醯胺類化合物之實驗步驟 .......................................................................................185 4-5 錯合物62與 (R)-芐基-α-羫基醯胺 69d熱穩定性類中間體 104之合成步驟………………………………………....186 4-6 芐基α-羫基酯類化合物 68, 70-87合成之一般實驗步驟…..188 4-7 芐基α-羫基酯類化合物 88-103合成之一般實驗步驟…….189 4-8 芐基α-羫基酯類或醯胺類化合物之光譜數據……………190 4-9 N-亞柳安基酸衍生氧釩錯合物之四聚體-五氧化釩-C4-對稱五核混合金屬簇合成步驟…………………………………...226 實驗部分之參考資料 ………………………………………....227 附錄 1H、13C光譜數據及X-Ray單晶繞射解析數據…………...237

    參考文獻
    1. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; John Wiley & Sons: New York, 1980.
    2. (a) McKenna, C. E.; Benemann, J. R.; Traylor, T. G. Biochem. Biophys. Res. Commun. 1970, 41, 1501. (b) Hales, B. J.; Case, E. E.; Moringstar, J. E.; Dzeda, M. F.; Mautner, A. Biochemistry 1986, 25, 7251. (c) Robson, R. L.; Eady, R. R.; Richardson, T. H.; Miller, R. W.; Hawkins, M.; Postgate, J. R. Nature 1986, 322, 388. (d) George, G. N.; Coyle, C. L.; Hales, B. J.; Cramer, S. P. J. Am. Chem. Soc. 1988, 110, 4057. (e) Hales, B. J.; True, A. E.; Hoffman, B. M. J. Am. Chem. Soc. 1989, 111, 8519.
    3. (a) Floriani, C.; Mazzanti, M.; Chiesi-Villa, A.; Guastini, C. Angew. Chem., Int. Ed. Engl. 1988, 27, 576. (b) Rehder, D.; Priebsch, W.; von Oeynhausen, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1221. (c) Sakurai, H.; Tsuchia, K. FEBS Lett. 1990, 260, 109. (d) Holmes, S.; Carrano, C. J. Inorg. Chem. 1991, 30, 1231. (e) Clague, M. J.; Keder, N. L.; Butler, A. Inorg. Chem. 1993, 32, 4754. (f) Clague, M. J.; Butler, A. J. Am. Chem. Soc. 1995, 117, 3475. (g) Andersson, M.; Conte, V.; Di Furia, F.; Moro, S. Tetrahedron Lett. 1995, 36, 2675.
    4. (a) Macara, I. G.; McLeod, G. C.; Kustin, K. Comp. Biochem. Physiol., B: Comp. Biochem. 1979, 63B, 299. (b) Oltz, E. M.; Bruening, R. C.; Smith, M. J.; Kustin, K.; Nakanishi, K. J. Am. Chem. Soc. 1988, 110, 6162. (c) Kustin, K. Acc. Chem. Res. 1991, 24, 117. (d) Taylor, S. W.; Kammerer, B. Bayer, E. Chem Rev. 1997, 97, 333.
    5. (a) Kustin, K.; Macara, I. G. Comments Inorg. Chem. 1982, 2, 1. (b) Nechay, B. R. Annu. Rev. Pharmacol. Toxicol. 1984, 24, 501. (c) Stoecker, B. J.; Hopkins, L. L. Biochemistry of the Essential Ultratrace Elements; Plenum Press: New York, 1984; p 239. (d) Nielsen, F. H. Trace Minerals in Foods; Marcel Dekker: New York, 1988; p 398. (e) McLaughlin, M. L.; Cronan, J. M., Jr.; Schaller, T. R.; Snelling, R. D. J. Am. Chem. Soc. 1990, 112, 8949. (f) Rehder, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 148.
    6. (b) For oxidative couplings, see: Hwang, D. R.; Chen, C. P.; Uang, B. J. J. Chem. Soc. Chem. Commun. 1999, 1207. (c) Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C.-T. Org. Lett. 2001, 3, 869. (d) For vicinal dialkylation of cyclic enones, see: Hirao, T.; Takada, T.; Sakurai, H. Org. Lett. 2000, 2, 3659.
    7. For a general review, see: Toshikazu Hirao Chemical Reviews 1997, 97, 8, 2707-2724
    8. Kaneda, K.; Kawanishi, Y.; Jitsukawa, K.; Teranishi, S. Tetrahedron Lett. 1983, 24, 5009.
    9. Kirihara, M.; Ochiai, Y.; Takizawa, S.; Takahata, H.; Nemoto, H. Chem. Commun. 1999, 1387.
    10.Gould, E. S.; Hiatt, R. R.; Irwin, K. C. J. Am. Chem. Soc. 1968, 90, 4573. Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136. Sharpless, K. B.; Verhoeven, T. R. Aldrichim. Acta 1979, 12, 63.
    11. (a) Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Am. Chem. Soc. 1979, 101, 159. (b) Mihelich, E. D. Stevens, R. V.; Chang, J. H.; Lapalme, R.; Schow, S.; Schlageter, M. G.; Shapiro, R.; Weller, H. N. J. Am. Chem. Soc. 1983, 105, 7719. (c) Corey, E. J.; De, B. J. Am. Chem. Soc. 1984, 106, 2735.
    12. (a) E. D. Mihelich, Tetrahedron Lett. 1979, 4729. (b) Rossiter, B. E.; Verhoven, T. R.; Sharpless, K. B. Tetrahedron Lett. 1979, 4733.
    13. Hoshino, Y.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 10452-10453.
    14. Wei Zhang, Arindrajit Basak, Yuji Kosugi, Yujiro Hoshino, Hisashi Yamamoto Angew. Chem. Int. Ed. 2005, 44, 4389-4391.
    15. Carrick, W. L.; Karapinka, G. L.; Kwiatkowski, G. T. J. Org. Chem. 1969, 34, 2388.
    16. Hwang, D.-R.; Chen, C.-P.; Uang, B.-J. Chem. Commun. 1999, 1207-1208.
    17. Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.; Wang, Y.; Chen, C-T. Org. Lett 2002, 4, 15, 2529-2532.
    18. Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. Chem. Commun. 2002, 914.
    19. Barhate, N. B. and Chen, C-T Org. Let, 2002, 4, 15, 2529-2532.
    20. C. Bolm, F. Bienewald Amgew. Chem. Int. Engl. 1995, 34, 2640-2642.
    21. C, Drago; L, Caggiano; F. Richard; W. Jacjson Angew. Chem. Int.
    Engl. 2005, 44, 7221-7223.
    22. A. Togni Organometallics 1990, 9, 3106.
    23. Chen,C-T; Hon, S-W; Weng, S-S Synlett. 1999, 6, 816-818.
    24. Chen,C-T; Kuo, J-H; Li, C-H; N. B. Barhate, Hon, S-W; Li, T-W; Chao, S-D; Liu, C-C; Li,Y-C; Chang, I-H; Lin, J-S; Liu, C-J; Chou Y-C Org. Lett 2001, 3, 23, 3729-3732.
    25. Chen,C-T; Kuo, J-H; Kuo, J-H; Ku,C-H; Weng, S-S; Liu, C-Y J. Org. Chem. 2005, 70, 1328-1339.
    26. (a) Hiort, C.; Goodisman, J.; Dabrowiak, J. C. Biochemistry 1996, 35, 12354. (b) Kwong, D. W. J.; Chan, O. Y.; Wong, R. N. S.; Musser, S. M.; Vaca, L.; Chan, S. I. Inorg. Chem. 1997, 36, 1276. (c) Chen,C-T; Lin, J-S; J-H; Kuo, J-H; Weng, S-S; Cuo, T-S; Lin, Y-W; Cheng, C-C; Huang, Y-C; Yu, J-K; Chou, P-T Org. Lett 2004, 6, 24, 4471.
    27. Lippard, S. J.; Berg. . M. Principles of Bioinorganic Chemisry; University Science Books: sausalito, CA, 1994, p 106.
    28. Fraústo da Silva, J. J. R.; williams, R. J. P. The Biological chemistry of elements; clarendon Press: Oxford. UK, 1991; p 513.
    29. Bortels, H. Zentralbl. Bakteriol. Parisitenkd. Infektionskr. 1936, 95, 193-218.
    30. E. C. De Renzo, E. Kaleita, P. Heytler, J. J. Oleson, B. L. Hutchings, and J. H. Williams. J. Am. Chem. Soc. 1953, 75, 753.
    31. (a) Spence, J. T. Coord. Chem. Rev. 1969, 4, 475-498. (b) Bray. R. C.; Swann, J. C. Structure and Bonding 1971, 11, 107-144. (c) Stiefel, E. I.; Coucouvanis, D.; Newton, W. E., Eds. Molybdenum Enzymes, Cofactors and model Systems; ACS Symposium Series 535; American Chemical Society: Washington, DC, 1993.
    32. Hille, R. Chem. Rev. 1996, 96, 2757-2816.
    33. J. L. Que; Tolman, W. B.; Comprehensive Coordination Chemistry II,
    McCleverty & Meyer From Biology to Nanotechnology., volume 8,
    Chapter 18, p 459-479.
    34. (a) Stiefel, E. I. Molybdenum. In Kirk Othmer Encyclopedia of Chemical Technology, 4th ed.; Wiley: New York, 1995; Vol. 16, p 940. (b) Braithwaite, E. R.; Haber, J. (Eds). Molybdenum: an outline of its chemistry and uses; Elsevier: Amsterdam, 1994.
    35. (a) Schrock, R. R. "High Oxidation State Multiple Metal-Carbon Bonds" Chem. Rev. 2002, 102, 145-180. (b) Hoveyda, A. H.; Schrock, R. R."Catalytic Asymmetric Olefin Metathesis" Organic Synthesis HighlightsV, Schmalz, Wirth, Ed., Wiley-VCH, p 210-229.
    36. (a) Kiely, A. F.; Jernelius, J. A.; Schrock, R. R.; Hoveyda, A. H. J.
    Am. Chem. Soc . 2002, 124, 2868–2869. (b) Weatherhead, G. S.;
    Cortez, A. G.; Schrock, R. R. ; Hoveyda, A. H. Proc. Natl. Acad.Sci.
    2004, 101, 5805–5809.
    37. O. Belda; N. F. Kaiser; U. Bremberg; M. Larhed; A. Hallberg; C. Moberg J. Org. Chem. 2000, 65, 5868-5870.
    38. (a) Ramesha, A. R.; Chandrasekaran, S. Synth. Commun. 1992, 22, 3277. (b) Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem. 1994, 59, 1354. 39. Prabhu, K. R.; Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem. 1995, 60, 7142.
    40. Prabhu, K. R.; Sivanand, P. S.; Chandrasekaran, S. Angew. Chem. Int. Engl. 2000, 39, 4316-4319.
    41. W. Adam; R. M. Bargon Chem. Commun. 2001, 1910-1911.
    42. W. Adam; R. M. Bargon, S. G. Bosio; W. A. Schenk; D. Stalke J. Org. Chem. 2002, 67, 7037.
    43. (a) Jarowicki, K.; Kocienski, P. Org. Synth. 1997, 454. (b) Dumeunier, R.; Marko, I. E. Tetrahedron Lett. 2004, 45, 825. (c) Le Roux, C.; Dubac, J. Synlett 2002, 2, 181.
    44. Chen,C-T; Kuo, J-H; V. D. Pawar; Y. S. Munot; Weng, S-S; Ku, C-H; Liu, C-Y J. Org. Chem. 2005, 70, 1188.
    45. (a) Green, T. W.; Wuts, P. G. Protective Group in Organic Synthesis; John Wiley & Sons: New York, 1999. (b) Kocienski, P. J. Protective Groups; Enders, R., Noyori, R., Trost, B. M., Eds.; Thieme: Stuttgart, 1994; Chapter 4.
    46. (a) Kocieňski, P. J. Protecting Groups; Georg Thieme Verlag: New York, 1994. (b) Meskens, F. A. J. Synthesis 1981, 501-502. (c) Schelhaas, M.; Waldmann, H. Angew. Chem. Int. Ed. Engl. 1996, 35, 2056-2083. (d) T. K. Lindhorst Essentials of carbohydrate Chemistry and Biochemistry. WILEY-VCH.
    47. Seebach, D.; Imwinkelried, R.; Weber, T. Modern Synthetic Methods 1986; Scheffold, R., Ed.; Springer-Verlag: 1986; Vol. 4, pp 125-259.
    48. Cameron, A. F. B.; Hunt, J. S.; Oughton, J. F.; Wilkinson, P. A.; Wilson, B. M. J. Chem. Soc. 1953, 3864.
    49. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357.
    50. Masaaki, K.; Wataru, H. J. Org. Chem. 2003, 68, 3413-3415.
    51. Gemal, A. L.; Luche, J.-L. J. Org. Chem. 1979, 44, 4187.
    52. Anderson, S. H.; Uh, H.-S. Synth. Commun. 1973, 3, 125.
    53. Wenkert, E., Goodwin, T. E. Synth. Commun. 1977, 7, 409.
    54. Zajac, W. W.; Byrne, K. J. J. Org. Chem. 1970, 35, 3375.
    55. (a) Karimi, B.; Seradj, H.; Ebrahimian, G. R. Synlett 1999, 456-1458.
    (b) Karimi, B.; Ebrahimian, G. R.; Seradj, H. Org. Lett. 1999, 1, 1737-1739.
    56. Bornstein, J.; Bedell, S. F.; Drummond, P. E.; Kopsloski, C. L. J. Am. Chem. Soc. 1956, 78, 83.
    57. Patwardhan, S. A.; Dev, S. Synthesis 1974, 348.
    58. (a) Karimi, B.; Ashtiani, A. M. Chem. Lett. 1999, 1199. (b) B. Karimi; G. R. Ebrahimian; H. Seradj Org. Lett., 1999, 11, 1737-1739.
    59. (a) Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synlett 1999, 321. (b) Jin, T.-S.; Zhang, S.-L.; Wang, X.-F.; Guo, J.-J.; Li, T.-S. J. Chem. Res. 2001, 289-291.
    60. (a) Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synlett 1999, 321. (b)Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synth. Commun. 1999, 29, 2255.
    61. Rangam Gopinath; Sk. Jiaul Haque; Bhisma K. Patel J. Org. Chem. 2002, 67, 5842-5845
    62. M. L. Nicholas; C. O. Matthew; D. A. Freiberg; B. A. Nattier; R. C. Smith; R. S. Mohan J. Org. Chem. 2002, 67, 5202-5207
    63. Ishihara, K.; Karumi, Y.; Kubota, M.; Yamamoto, H. Synlett 1996, 839-841.
    64. (a) Daignault, R. A.; Eliel, E. L. Organic Syntheses; Wiley: New York, 1973; Collect. Vol. V, p 303. (b) Caserio, F. F.; Roberts, J. D. J. Am. Chem. Soc. 1958, 80, 5837. (c) Fieser, L. F.; Stevenson, R. J. Am. Chem. Soc. 1954, 76, 1728. (d) Howard, E. G.; Lindsey, R. V. J. Am. Chem. Soc. 1960, 82, 158. (e) Dauben, W. G.; Gerdes, J. M.; Look, G. C. J. Org. Chem. 1986, 51, 4964. (f) Ethylene glycol/TMSCl: Chan, T. H.; Brook, M. A.; Chaly, T. Synthesis 1983, 203. (g) AlPO4: Bautista, F. M.; Campelo, J. M.; Garcia, A.; Leon, J.; Luna, D.; Marinas, J. M. J. Prakt. Chem. 1994, 336, 620. (h) CdI2: Laskar, D. D.; Prajapati, D.; Sandhu, J. S. Chem. Lett. 1999, 1283. (i) Rh(III) triphos moieties: Ott, J.; Tombo, G. M. R.; Schmid, B.; Venanzi, L. M.; Wang, G.; Ward, T. R. Tetrahedron Lett. 1989, 30, 6151. (j) BF3.Et2O: Torok, D. S.; Figueroa, J. J.; Scott, W. J. J. Org. Chem. 1993, 58, 7274. (K) Ti(OR)4/TiCl4: Mahrwald, R. J. Prakt. Chem. 1994, 336, 361. (l) Envirocats: Beregszaszi, T.; olnar, A. Synth. Commun. 1997, 27, 3705. (m) Pt-Mo/ZrO2: Reddy, B. M.; Reddy, V. R.; Giridhar, D. Synth. Commun. 2001, 31, 1819. (n) Microwave irradiation: Perio, B.; Dozias, M.-J.; Jacquault, P.; Hamelin, J. Tetrahedron Lett. 1997, 38, 7867. (o) TiCl4/Et3N: lerici, A.; Pastori, N.; Porta, O. Tetrahedron 1998, 54, 15679. (p) Thurkauf, A.; Jacobson, A. E.; Rice, K. C. Synthesis 1988, 233.
    65. T. K. Lindhorst Essential of Carbohydrate Chemistry and Biochemistry, VILEY-VCH, p 59.
    66. L, Jiang, T.- H. Chan Tetrahedron Lett. 1998, 39, 355.
    67. (a)Wang, C.-C.; Luo, S.-Y.; Shie, C.-R.; Hung, S.-C. Org. Lett. 2002, 4, 847-849 (b) Shie, C.-R.; Tzeng, Z.-H.; Kulkarni, S. S.; Uang, B.-J.; Hsu, C.-Y.; Hung, S.-C. Angew. Chem. Int. Ed. 2005, 44, 1665-1668.
    68. Paulsen, H. Chem. Soc. Rev. 1972, 13, 15.
    69. Durette, P. L.; Shen, T.Y. Carbohydr. Res. 1980, 83,178.
    70. (a) Saito, S.; Tsuchiya, S. Biochem, 1984, 222, 829. (b) Saito, S.; Tsuchiya, S. Chem. Pharm. Bull. 1985, 33,503. (c) Bock, K.; Defaye, J.; Driguez, H. European Journal of Biochemistry 1983, 131, 595-600.
    71. (a) Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett. 1990, 31, 4313. (b) Lonn, H. Carbohydr. Res. 1989, 135, 105. (c) Fugedi, P.; Garegg, P. J. Carbohydr. Res. 1986, 149, C9. (d) Veeneman, G. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 275.
    72. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.
    73. Wang, C.-C.; Luo, S.-Y.; Shie, C.-R.; Hung, S.-C. Org. Lett. 2001, 4, 847.
    74. Boulineau, F. P.; Wei, A. Carbohydr. Res. 2001, 334, 271.
    75. (a) Jiang, L.; Chan, T.-H. Tetrahedron Lett. 1998, 39, 355. (b) Hernández-Torres, J. M.; Achkar, J.; Wei, A. J. Org. Chem. 2004, 69, 7206.
    76. Wong, C.-H.; Ye, X.-S.; Zhang, Z. J. Am. Chem. Soc. 1998, 120, 7137.
    77. (a) D’Andrea, F.; Catelani, G..; Mariani, M.; Vecchi, B. Tetrahedron Lett. 2001, 42, 1139. (b) Copeland, C.; Stick, R. V. Aust. J. Chem. 1982, 35, 1709.
    78. (a) Paulsen, H. Chem. Soc. Rev. 1972, 13, 15. (b) Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2006, 106, 160.
    79. Durette, P. L.; Shen, T. Y. Carbohydr. Res. 1980, 83, 178.
    80. Saito, S.; X. Tsuchiya Biochem. 1984, 222, 829.
    81. Saito, S.; X. Tsuchiya Chem. Pharm. Bull. 1985, 33, 503.
    82. Monod, J. Angew. Chemie Int. Ed. Engl. 1959, 71, 658.
    83. Rho, D.; Desrochers, M.; Jurasek, L.; Driguez, H.; Defaye, J. J. Bacteriol. 1982, 149, 47.
    84. Bock, K.; Defaye, J.; Driguez, H.; Bar-Guilloux, E. Eur. J. Biochem. 1983, 131, 595.
    85. Rafestin, M. E.; Obrenovitch, A.; Oblin, A.; Monsigny, M. FEBS Lett. 1974, 40, 62.
    86. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.;Baasov,T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.
    87. Z. Zhang; I. R. Ollmann; X-S, Ye; R. Wischnat; T. Baasov; Wong, C-H J. Am. Chem. Soc. 1999, 121, 734.
    88. (a) Konradsson, P.; Udodong, U. E.; Fraser-Reid, B. Tetrahedron Lett.
    1990, 31, 4313. (b) Lonn, H. Carbohydr. Res. 1989, 135, 105. (c)
    Fugedi, P., Garegg, P. J. Carbohydr. Res. 1986, 149, C9. (d) Veeneman,
    G. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 275. (e) Burkart, M.
    D.; Zhang, Z.; Hung, S.-C.; Wong, C.-H. J. Am. Chem. Soc. 1997, 119,
    11743. (11) Wong, C. H., Ye, X.; Zhang, Z. J. Am. Chem. Soc. 1998,
    120, 7137.
    89. (a) Lemieux, R. U. Can. J. Chem. 1951, 59, 314. (b) Müller, D.; Vic,
    G., Critchley; Crout, P. D. H. G.; Lea, N.; Roberts, L.; Lord, J. M. J.
    Chem. Soc., Perkin Trans. 1 1998, 2287.
    90. Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F. J. Am. Chem. Soc. 1997, 119, 449.
    91. Viso, A.; Poopeikoy, N.; Castillón, S. Tetrahedron Lett. 2000, 41, 407.
    92. Malet, C.; Viladot, J. L.; Ochoa, A.; Gállego, B.; Brosa, C. ; Planas, A. Carbohydr. Res. 1995, 274, 285.
    93. Mong, T. K.-K.; Huang, C.-Y.; Wong, C.-H. J. Org. Chem. 2003, 68, 2135.
    94. Mahadevan, A.; Li, C.; Fuchs, P. L. Synth. Comm. 1994, 24, 21, 3009.
    95. Rajanikanth, B., Seshadri, R. Tetrahedron Lett. 1987, 28, 2995.
    96. Yanase, M.; Funabashi, M. J. Carbohydr. Chem. 2000, 19, 1, 53.
    97. (a) Geurtsen, R.; Holmes, D. S.; Boons, G.-J. J. Org. Chem. 1997, 62, 8145. (b) Pozsgay, V.; Jennings, H. J. J. Org. Chem. 1988, 53, 4042.
    98. Shimadate, T.; Chiba, S.; Inouye, K.; Iino, T.; Hosoyama, Y. Bull. Chem. Soc. Jpn. 1982, 55, 3552.
    99. Contour, M. O.; Defaye, J.; Iittle, M.; Wong, E. Carbohydr. Res. 1989, 193,283.
    100. (a) For ZnCl2: D., Deulofeu J. Org. Chem. 1952, 17, p 1097-1100 (b) for FeCl3: D., Falguni; G. Acta Chem. Scand., 1989, 43, 5, p 471-475. (c) for SnCl4 : Pascu, Chem. Ber., 1928, 61, 137, p 143. (d) for BF3.Et2O : Csueroes et al. Acta Chim. Acad. Sci. 1959, 19, 181-188.
    101. Shimadate, T.; Chiba, S.; Inouye, K.; Iino, T.; Hosoyama, Y. Bull. Chem. Soc. Jpn. 1982, 55, 3552.
    102. (a) Driguez, H. In Topics in Current Chemistry: Glycoscience; Driguez, H., Thiem, J., Eds.; Springer: Berlin, 1997; Vol. 187, p 85. (b) Sulzenbacher, G.; Driguez, H.; Henrissat, B.; Schulein, M.; Davies, G. J. Biochemistry 1996, 35, 15280.
    103. Haines, A. H., ed. (1988) Methods for the Oxidation of Organic Compounds: Alcohols, Alcohol Derivatives, Alkyl Halides (Academic, London). 104. Matsumoto, M. & Watanabe, N. (1984) J. Org. Chem. 49, 3435–3436.
    105. Velusamy, S.; Punniyamurthy, T. Org. Lett. 2004, 6, 217–219.
    106. (a) Muldoon, J.; Brown, S. N. Org. Lett. 2002, 4, 1043–1045.
    (b) Iwahama, T.; Yoshino, Y.; Keitoku, T., Sakaguchi,S.; Ishii, Y. J. Org.Chem 2002, 65, 6502–6507.
    107. Miyata, A., Murakami, M., Irie, R.; Katsuki, T. Tetrahedron Lett. 2001,42, 7067–7070.
    108. Hanyu, A.; Takezawa, E.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 1998, 39, 5557–5560.
    109. Marko´, I. E.; Giles, P. R., Tsukazaki, M.; Chelle´ -Regnaut, I.; Gautier, A.; Brown, S. M.; Urch; C. J. J. Org. Chem. 1999, 4, 2433–2439.
    110. (a) Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A. Chem. Commun. 1999, 111, 1591–1592. (b) Semmelhack, M. F.; Schmid, C. R.; Corte´s, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374–3376.
    112. Peterson, K. P.; Larock, R. C. J. Org. Chem 1998, 63, 3185–3189.
    113. Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750–6755.
    114. Kaneda, K.; Fujii, M.; Morioka, K. J. Org. Chem. 1996, 61, 4502–4503.
    115. Murahashi, S.-I.; Naota, T.; Hirai, N. J. Org. Chem. 1993, 58, 7318–7319.
    116. Lorber, C. Y.; Smidt, S. P.; Osborn, J. A. Eur. J. Inorg. Chem. 2000, 4, 655–658.
    117. David R. Jensen; Jacob S. Pugsley; M. S. Sigman J. Am. Chem. Soc. 2001, 123, 7475.
    118. E.M. Ferreira; B. M. Stoltz J. Am. Chem. Soc. 2001, 123, 7725.
    119. Masutani, K.; Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2000, 41, 5119–5123.
    120. Sun, W.; Wang, H.; Xia, C.; Li, J.; Zhao, P. Angew. Chem. Int. Ed. 2003, 42, 1042–1044.
    121. (a) The Merck Index, 11th ed.; Budavari, S., Ed., Merck & Co.:
    Rahway, NJ, 1989, p 898. (b) Nakamura, K.; Tsuji, K.; Kiyoshi, K.;
    Nobukiyo, M.; Matsuo, M. Chem. Pharm. Bull. 1993, 41, 2050. (c)
    Hoefnagel, A. J.; Peters, J. A.; van Bekkum, H. Recl. Trav. Chim.
    Pays-Bas 1988, 107, 242. (d) Hoefnagel, A. J.; Peters, J. A.; van
    Bekkum, H. Recl. Trav. Chim. Pays-Bas 1996, 115, 353. (e) Miersch,
    O.; Kramell, R.; Parthier, B.; Wastemack, C. Phytochemistry 1999, 50,
    353. (f) Yoshioka, M.; Yoshida, A.; Ichihashi, Y.; Saito, H. Chem.
    Pharm. Bull. 1985, 33, 2145. (g) Khalaj, A.; Shadnia, H.; Sharifzadeh,
    M. Pharm. Pharmacol. Commun. 1998, 4, 373.
    122. (a) Chadha, A.; Baskar, B. Tetrahedron : Asymmetry 2002, 13, 1461. (b) Queiroz, n.; do Nascimento, G. M. Tetrahedron Lett. 2002, 43, 5225. (c) Adam, W.; Lazarus, M.; Boss, B.; Saha-Moller, C. R.; Humpf, H.-U.; Schreier, P.; J. Org. Chem. 1997, 62, 7841. (d) Palomo, J. M.; Ferna´ndez -Lorente, G.; Ru´a, M. L.; Guisa´n, J. M.; Ferna´ndez-Lafuente, R. Tetrahedron : Asymmetry 2003, 14, 3679.
    123. Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1090.
    124. Huerta, F. F.; Laxmi, Y. R. S.; Backvall, J.-E. Org. Lett., 2000, 2, 1037.
    125(a) Chen, Y. T.; Onaran, M. B.; Doss, C. J.; Seto, C. T. Bioorg.Med.Chem.Lett. 2001, 11, 1935–1938.60. (b) Nizi, E.; Koch, U.; Ponzi, S.; Matassa, V. G.; Gardelli, C. Bioorg. Med. Chem.
    Lett. 2002, 12, 3325–3328.
    126. (a) You, J.-S.; Yu, X.-Q.; Zhang, G.-L.; Xing, Q.-X.; Lan, J.-B.; Xie, R.-G. Chem. Commun. 2001, 1816 and references therein. (b) Kim, J.; Kim, S.-G.; Seong, H. R.; Ahn, K. H. J. Org. Chem. 2005, 70, 7227 and references therein. (c) Fang, T.; Du, D.-M.; Lu, S.-F.; Xu, J. Org. Lett. 2005, 7, 2081. (d) Moberg, C. Angew. Chem. Int. Ed. 1998, 37, 248. (e) McMenimen, K. A.; Hamiltin, D. G. J. Am. Chem. Soc. 2001, 123, 6453.
    127. (a) Andreetti, G. D.; Bohmer, V.; Jordon, J. G.; Tabatabai, M.; Ugozzoli, F.; Vogt, W.; Wolff, A. J. Org. Chem. 1993, 58, 4023. (b) Pickard, S. T.; Pirkel, W. H.; Tabatabai, M.; Vogt, W.; Bohmer, V. Chirality 1993, 5, 310. (c) Huan, G.; Jacobson, A. J.; Day, V. W. Angew. Chem. Int. Ed. Engl. 1991, 30, 422.
    128. For biological systems exhibiting C4-symmetry, see: (a) Orlova, E. V.; Rahman, M. A.; Gowen, B.; Volynski, K. E.; Ashton, A. C.; Manser, C.; van Heel, M.; Ushkaryov, Y. A. Nature Struc. Biol. 2000, 7, 48. (b) Collins, R. F.; Frye, S. A.; Kitmitto, A.; Ford, R. C.; Tonjum, T.; Derrick, J. P. J. Biol. Chem. 2004, 279, 39750.
    129. (a) Bonadies, J. A.; Butler, W. M.; Pecoraro, V.; Carrano, C. J. Inorg. Chem. 1987, 26, 1218. (b) Nakajima, K.; kojima, M.; Toriumi, K.; Saito, K.; Fujita, J. Bull. Chem. Soc. Jpn. 1989, 62, 760.
    130. (a) Schmidt, H.; Bashirpoor, M.; Rehder, D. J. Chem. Soc., Dalton Trans. 1996, 3865. (b) Zamian, J. R.; Dockal, E. R.; Castellano, G.; Oliva, G. Polyhedron 1995, 14, 2411.
    131“Macrocyclic chemistry: aspects of organic and inorganic supramolecular chemistry” B. Dietrich; P. Viout; J.-M. Lehn; W. E. Douglas, New York : VCH, 1993.
    132. Kocovsky, P.; Vyskocil, S.; Smrcina, M. Chem. Rev 2003, 103, 8, 3213-3246.

    QR CODE