研究生: |
姚詠祺 Yung-Chi Yao |
---|---|
論文名稱: |
新穎高效率太陽能電池之研究 A Study of Novel Structures on the Enhanced Power Conversion Efficiency of Solar Cells |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
博士 Doctor |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 133 |
中文關鍵詞: | 太陽能電池 、斜角沉積技術 、奈米結構製程 、極化 、量子點 |
英文關鍵詞: | Solar cell, Oblique-angle deposition, Nanostructure fabrication, Polarization, Quantum dot |
DOI URL: | https://doi.org/10.6345/NTNU202205410 |
論文種類: | 學術論文 |
相關次數: | 點閱:191 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於經濟的快速發展與人類的頻繁活動,人們對自然資源的需求與日俱增,其結果造成了各種天然資源日益短缺。為了解決人類永續使用能源的問題,科學界以及工業界正如火如荼地發展各種替代性能源。在這些替代性能源中,太陽光長期以來一直被視作永恆的能量來源,因此與太陽能相關的技術得以迅速地蓬勃發展,而其中以太陽能電池更是被廣泛地研究和討論。在本論文中,我們主要是根據不同電池材料的組成提出許多新穎的結構來提升太陽能電池的轉換效率。首先,我們已經成功地證明結合二維矽奈米柱(線)陣列和斜向銦錫氧化物薄膜的新穎抗反射膜對於入射光有大角度、寬頻譜的強吸收率,因此能有效提升該太陽能電池的轉換效率。第二,我們利用數值模擬方法分析出一不靠外部(雜質)摻雜、僅利用漸變氮化銦鎵的銦含量來製作單一接面滿足全光譜響應的高銦含量三族氮化物n-i-p太陽能電池。最後,我們提出利用硒化鎘量子點調製太陽光譜來提升磷化銦鎵/砷化鎵/鍺串聯式太陽能電池的轉換效率。本論文依照各個章節不同的研究主題和使用方法將摘要進行分類,其分類如下:
1. 利用矽奈米柱(線)陣列搭配斜向銦錫氧化物膜增加太陽能電池光學吸收之應用
矽奈米柱(線)在太陽能電池方面的應用已被廣泛認為是相當具有吸引力的。在本研究中,我們分別利用感應電耦合式乾蝕刻技術和氧化還原-金屬誘導化學蝕刻方式製作出二維矽奈米柱(線)陣列。為了進一步降低發生在空氣和矽奈米柱(線)界面處的菲涅耳反射,我們提出利用斜角濺鍍沉積技術將奈米尺度等級的斜向銦錫氧化物薄膜作為空氣和矽奈米柱(線)間的中間層。由於矽奈米柱(線)能提供遮蔽效應,入射的銦錫氧化物氣流將被優先地沉積在矽奈米柱(線)的頂部,最終我們製作出的斜向銦錫氧化物薄膜可達到幾乎是無損且連續的表面。斜向銦錫氧化物薄膜除了本身擁有低折射率、高透明度外,在快速熱退火450℃的處理下,其薄膜的電阻率約為1.07x10^-3 Ω-cm,其摻雜濃度和載子遷移率分別為3.7x10^20 cm-3和15.8 cm2/V-s,亦可直接拿來當作電池的接觸電極。根據理論計算,該結構的轉換效率相對於單晶矽裸片的太陽能電池約有42% 的提升,證明上述的奈米結構組合對於入射光有大角度、寬頻譜的強吸收率。然而在實際元件製作上,元件上層與銦錫氧化物接面因極性不匹配以及奈米線的高深寬比導致高的串聯電阻和低的並聯電阻,其結果伴隨著高的逆向飽和電流加劇光生載子在表面復合,進而影響了整體元件的轉換效率。
2. 感應極化摻雜三族氮化物太陽能電池之研究
我們利用理論計算方式來評估並設計出新型感應極化摻雜氮化銦鎵n-i-p太陽能電池。該方法並不使用傳統雜質摻雜,反而是藉由線性增加(0%增至30%)和降低(30%降至0%)氮化銦鎵裡每個單位電池的銦含量所導致的感應極化摻雜來製作太陽能電池的p型和n型區,其中p型和n型區的載子濃度均達到3×10^18 cm-3。在氮化銦鎵n-i-p太陽能電池裡,由於每個單位電池具有大小相同且均勻的極化電荷,將其依銦含量漸變堆疊可預期該元件的電位分佈有平滑的空間變化,這樣一來減緩能帶在異質界面處的不連續性,並有利於光生載子能高效率地流動和收集。最重要的是導電n型和p型區是透過靜電場的離子化而不是熱活化所形成的,該感應極化電場的載子濃度與熱凍結效應無關。因此,感應極化摻雜的三族氮化物n-i-p太陽能電池即使在低溫環境下操作亦可以提供穩定的轉換效率。
3. 使用硒化鎘量子點改善磷化銦鎵/砷化鎵/鍺串聯式太陽能電池之電流匹配與提升其轉換效率之研究
三五族串聯式太陽能電池是最有效提供極高轉換效率的電池結構。然而該元件裡每個子電池之間的電流不匹配問題是引起該電池轉換效率實驗值偏離理論值一顯著挑戰。在本研究中,我們使用硒化鎘量子點來提升被限制的子電池光電流以匹配其他子電池的電流輸出並予以提升整體磷化銦鎵/砷化鎵/鍺串聯型太陽能電池的轉換效率。該限制的光電流被提升的主要原因來自於量子點做為光子轉換器的基本機制。不同尺寸的量子點有調製太陽光譜的獨特能力,因此該太陽能電池提升的效率與選擇量子點的尺寸大小有絕對的關係。本研究結果顯示透過適當地選擇量子點,我們發現佈上直徑4.2 nm、濃度7 mg/ml的硒化鎘量子點在磷化銦鎵/砷化鎵/鍺串聯型太陽能電池上,其轉換效率與沒有佈上任何量子點的電池相比能有效提升10.39%。
Recently, both scientific and industrial communities are dedicated to exploring and searching alternative ways of renewable energy due to the inevitable shortage of natural resource. Among them, the solar light was longtime considered as a permanent energy, and that leads to a prompt and intensive development associated with the solar energy technology. In this thesis, we apply several novel structures mainly on the solar cells composed of different based materials, and validate its feasibility in term of the enhanced power conversion efficiency of the devices. First, we propose a brand new structure of antireflection coating (ARC) which combines a low-reflectivity 2-dimensional (2D) Si-based nanorod array, and the slanted indium-tin-oxide (ITO) film simultaneously with excellent electrical (conductive) and lossless optical (transparent) features. Second, as the demand of one single device exhibiting a full-solar-spectrum response is increased, we numerically evaluate the III-nitride solar cells with high indium contents by the grading of indium compositions scheme. Finally, we demonstrate a general strategy by simply casting cadmium selenide (CdSe) quantum dots (QDs) upon InGaP/GaAs/Ge tandem solar cells to tailor the incident solar spectrum, and to achieve current matching between every sub-cells. The highlight of our scientific achievement is briefly described as follows.
1. Use of Si-based nanorods/nanowires solar cells with slanted ITO films to enhance optical absorption for photovoltaic applications
The Si-nanorods/nanowires offer a promising architecture that has been widely recognized as attractive devices for photovoltaic applications. We adopt a slanted ITO film as an intermediate layer by using oblique-angle sputtering deposition to further reduce the Fresnel reflection of the device. Besides, the slanted ITO film exhibits the resistivity of 1.07x10^-3 Ω-cm underwent RTA treatment of T=450°C, and the doping concentration and the carrier mobility by Hall measurement amount to 3.7x10^20 cm-3 and 15.8 cm2/V-s, respectively. It is acceptable to perform as a transparent conductive film for photovoltaic applications. Theoretically, the proposed structures exhibit high optical absorption over a broad range of wavelengths and incident angles and an improvement of power conversion efficiency () approximately 42% over that of its bare Si counterpart. Yet the real device of proposed schme shows a low value of =0.26%, which is mainly attributed to the mis-aligning doped polarity at p-Si/n-ITO interface and the high aspect ratio of Si-nanowires, resulting in large series resistance and small shunt resistance, and excerbating the surface recombination process accompanied with high reverse current characteristics.
2. Polarization-induced doping III-nitride n-i-p solar Cells
We numerically evaluate a new type of III-nitride n-i-p solar cells by the so-called polarization-induced doping, which is induced by the graded InxGa1-xN layers of linearly increasing (from x=0% to 30%) and decreasing (from x=30% to 0%) the indium composition to construct the conductive p- and n-type regions, respectively. As the conductive n- and p-type regions are formed by electrostatic field ionization but not by the thermal activation, the concentration of field-induced carriers is independent of thermal freezeout effects, and the device can provide stable power conversion efficiency even operated at low temperatures.
3. Current matching using CdSe QDs to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells
We explore a promising strategy using CdSe QDs to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism is mainly attributed to the photon conversion of the QDs that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD’s dimensions. By appropriately selecting and spreading CdSe QDs upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the conventional devices.
[1.1] M. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies,” Renewable and Sustainable Energy Reviews, 11, 1388–1413 (2007).
[1.2] G. P. Smestad, Optoelectronics of Solar Cells (SPIE Press, 2002).
[1.3] “Total surface area required to fuel the world with solar,” http://landartgenerator.org/blagi/archives/127 (2009).
[1.4] John A. Turner, “A realizable renewable energy future,” Science, 285(5428), 687-689 (1999).
[1.5] “Classification of solar cell technologies,” http://sovoxglobal.com/cell_classification.html (SOVOX Solar Power Development).
[1.6] “Solar markets,” http://solarcellcentral.com/markets_page.html (Solar Cell Central, Four Peaks Technologies, Inc. Sottsdale, AZ).
[1.7] “Best research-cell efficiencies,” http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREL).
[1.8] “Record-breaking solar cell points the way to cheaper power,” http://www.technologyreview.com/news/528351/record-breaking-solar-cell-points-the-way-to-cheaper-power/ (2014).
[1.9] David Appleyard, “Utility-scale thin-film: three new plants in germany total almost 50 MW,” Renewable Energy World Magazine, March 11 (2009).
[1.10] “First Solar builds the highest efficiency thin film PV cell on record,” http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=864426 (2014).
[1.11] Mathias, “Solar cell efficiency world record set by Sharp — 44.4%,” http://cleantechnica.com/2013/06/23/solar-cell-efficiency-world-record-set-by-sharp-44-4/ (2013).
[1.12] Eric Wesoff, “Sharp hits record 44.4% efficiency for triple-junction solar cell,” http://www.greentechmedia.com/articles/read/Sharp-Hits-Record-44.4-Effi- ciency-For-Triple-Junction-Solar-Cell (2013).
[1.13] “NREL Reports 31.1% Efficiency for III-V Solar Cell,” http://www.nrel.gov/news/press/2013/2226.html (News Release NR-3913, NREL, 2013).
[1.14] Nam-Gyu Park, “Perovskite solar cells: an emerging photovoltaic technology,” Materials Today, in press (2014).
[1.15] L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng., 62(6), 175–189 (2008).
[1.16] C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, and E. S. Aydil, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A, 29(3), 030801 (2011).
[1.17] A. Fujisaka, S. Kang, L. Tian, Y. L. Chow, and A. Belyaev, “Implant-cleave process enables ultra-thin wafers without kerf loss,” Photovoltaics World, pp. 21–24, Issue: May/Jun (2011).
[1.18] J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett., 10(6), 1979–1984 (2010).
[1.19] O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, and S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl., 19(3), 307–312 (2011).
[1.20] K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology, 11(3), 161–164 (2000).
[1.21] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small, 1(11), 1062–1067 (2005).
[1.22] V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energy Mater. Sol. Cells, 94(12), 2251–2257 (2010).
[1.23] J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “S nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett., 95(3), 033102 (2009).
[1.24] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91(23), 233117 (2007).
[1.25] E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc., 130(29), 9224–9225 (2008).
[1.26] S. Perraud, S. Poncet, S. Noël, M. Levis, P. Faucherand, E. Rouvière, P. Thony, C. Jaussaud, and R. Delsol, “Full process for integrating silicon nanowire arrays into solar cells,” Sol. Energy Mater. Sol. Cells, 93(9), 1568–1571 (2009).
[1.27] T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology, 19(29), 295203 (2008).
[1.28] S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, G. Q. Lo, and D. L. Kwong, “Design high-efficiency Si nanopillar-array-textured thin-film solar cell,” IEEE Electron Device Lett., 31(4), 335–337 (2010).
[1.29] K. Rasool, M. A. Rafiq, C. B. Li, E. Krali, Z. A. K. Durrani, and M. M. Hasan, “Enhanced electrical and dielectric properties of polymer covered silicon nanowire arrays,” Appl. Phys. Lett., 101(2), 023114 (2012).
[1.30] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., 91(13), 132117 (2007).
[1.31] J.-K. Sheu, C.-C. Yang, S.-J. Tu, K.-H. Chang, M.-L. Lee, W.-C. Lai, and L.-C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett., 30(3), 225-227 (2009).
[1.32] Z. Ren, L. Chao, X. Chen, B. Zhao, X. Wang, J. Tong, J. Zhang, X. Zhuo, D. Li, H. Yi, and S. Li, “Enhanced performance of InGaN/GaN based solar cells with an In0.05Ga0.95N ultra-thin inserting layer between GaN barrier and In0.2Ga0.8N well,” Opt. Express, 21(6), 7118-7124 (2013).
[1.33] Y.-A. Chang, F.-M. Chen, Y.-L. Tsai, C.-W. Chang, K.-J. Chen, S.-R. Li, T.-C. Lu, H.-C. Kuo, Y.-K. Kuo, P. Yu, C.-C. Lin, and L.-W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express, 22(S5), A1334- A1342 (2014).
[1.34] Y.-J. Lee, M.-H. Lee, C.-M. Cheng, C.-H. Yang, “Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate,” Appl. Phys. Lett., 98(26), 263504 (2011).
[1.35] Y.-C. Yao, M.-T. Tsai, C.-Y. Huang, T.-Y. Lin, J.-K. Sheu, Y.-J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett., 103(19), 193503 (2013).
[1.36] Y.-J. Lee, Z.-P. Yang, F.-Y. Lo, J.-J. Siao, Z.-H. Xie, Y.-L. Chuang, T.-Y. Lin, and J.-K. Sheu, “Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition,” APL Mat., 2(5), 056101 (2014).
[1.37] J. J. Wierer, A. J. Fischer, and D. D. Koleske, “The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices,” Appl. Phys. Lett., 96(5), 051107 (2010).
[1.38] C. J. Neufeld, S. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett., 98(24), 243507 (2011).
[1.39] H. Xing, D. S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S. P. Denbaars, and U. K. Mishra, “Memory effect and redistribution of Mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., 42(1), 50-53 (2003).
[1.40] J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science, 327(5961), 60-64 (2010).
[1.41] S. D. Carnevale, T. F. Kent, P. J. Phillips, M. J. Mills, S. Rajan, and R. C. Myers, “Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence,” Nano Lett., 12(2), 915-920 (2012).
[1.42] S. Li, M. Ware, J. Wu, P. Minor, Z. Wang, Z. Wu, Y. Jiang, and G. J. Salamo, “Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN,” Appl. Phys. Lett., 101(12), 122103 (2012).
[1.43] M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett., 102(3), 033901 (2013).
[1.44] “Sharp Develops Concentrator Solar Cell with World's Highest Conversion Efficiency of 44.4%,” http://sharp-world.com/corporate/news/130614.html (2013).
[1.45] J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett., 93(12), 123505 (2008).
[1.46] K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies, 2(3), 504–530 (2009).
[1.47] L. A. Kosyachenko, Solar Cells-Silicon Wafer-Based Technologies (InTech, Rijeka, Croatia, 2011), p. 335-337.
[1.48] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., 32(3), 510 (1961).
[1.49] M. W. Wanlass, S. P. Ahrenkiel, R. K. Ahrenkiel, D. S. Albin, J. J. Carapella, A. Duda, J. F. Geisz, S. Kurtz, T. Moriarty, R. J. Wehrer, and B. Wernsman, “Lattice-mismatched approaches for high-performance, III-V photovoltaic energy converters,” in Proceedings of the 31th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 530–535.
[1.50] R. R. King, M. Haddad, T. Isshiki, P. Colter, J. Ermer, H. Yoon, D. E. Joslin, and N. H. Karam, “Next-generation, high-efficiency III-V multijunction solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 998–1001.
[1.51] F. Dimroth, U. Schubert, and A. W. Bett, “25.5% efficient Ga0.35In0.65P/Ga0.83In0.17 as tandem solar cells grown on GaAs substrates,” IEEE Electron Dev., 21(5), 209–211 (2000).
[1.52] A. J. Nozik, “Quantum dot solar cells,” Physica E 14(1-2), 115–120 (2002).
[1.53] R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett., 92(18), 186601 (2004).
[1.54] A. Franceschetti, J. M. An, and A. Zunger, “Impact ionization can explain carrier multiplication in PbSe quantum dots,” Nano Lett., 6(10), 2191–2195 (2006).
[1.55] M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys., 83(8), 4213–4221(1998).
[1.56] C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano, 4(10), 5849–5854 (2010).
[2.1] G. P. Smestad, Optoelectronics of Solar Cells (SPIE Press, 2002).
[2.2] ASTMG173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
[2.3] “Quantum Efficiency,” http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency (PVEDUCATION.ORG site).
[3.1] C. B. Honsberg, A. M. Barnett and D. Kirkpatrick, “Nanostructured Solar Cells for High Efficiency Photovoltaics,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2, 2565 - 2568 (2006).
[3.2] S. M. Wong, H. Y. Yu, J. S. Li, G. Zhang, Patrick G. Q. Lo, and D. L. Kwong, “Design High-Efficiency SiN nanopillar-Array-Textured Thin-Film Solar Cell,” IEEE Electron. Device. Lett., 31, 335, 2010.
[3.3] A. Luque, and A. Martí, “A Metallic Intermediate Band High Efficiency Solar Cell,” Progress in Photovoltaics, 9, 73-86 (2001).
[3.4] R. T. Ross, “Efficiency of hot-carrier solar energy converters,” Journal of Applied Physics, 53(5), 3813-18 (1982).
[3.5] J. Zhu, C.-M. Hsu, Z.F. Yu, S.H. Fan, and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning,” Nano Lett., 10, 1979–1984 (2010).
[3.6] S. M. Lindner, S. Hüttner, A. Chiche, M. Thelakkat, and G. Krausch, “Charge Separation at Self-Assembled Nanostructured Bulk Interface in Block Copolymers,” Angew. Chem. Int. Ed., 45(20), 3364–3368 (2006).
[3.7] C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express, 16(12), 8748–8754 (2008).
[3.8] J. Li, H.Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett., 95(24), 243113 (2009).
[3.9] J. Son, L. K. Verma, A. J. Danner, C. S. Bhatia, and H. Yang, “Enhancement of optical transmission with random nanohole structures,” Opt. Express, 19(S1), A35–A40 (2011).
[3.10] J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett., 9(1), 279–282 (2009).
[3.11] Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small, 6(9), 984–987 (2010).
[3.12] J. Zhu, Z.F. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y.Q. Xu, Q. Wang, M. McGehee, S.H. Fan, and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett., 9(1), 279-282 (2009).
[3.13] J. A. Vollgraff, “Snellius’ notes on the reflection and refraction of rays,” Osiris, 1, 718–725 (1936).
[3.14] G. A. Boutry, “Augustin Fresnel: His time, life and work 1788–1827,” Science Progress, 36, 587–604 (1948).
[3.15] “Novel thin films target device applications,” http://optics.org/article/33672 (2008).
[3.16] Y.-P. Zhao, D.-X. Ye, G.-C. Wang and T.-M. Lu, “Designing Nanostructures by Glancing Angle Deposition,” Nanotubes and Nanowires in Proc. of SPIE, 5219, 1-73 (2003).
[3.17] J. G. W. van de Waterbeemd and G. W. van Oosterhout, Philips Res. Rep., 22, 375 (1967).
[3.18] A. Lisfi and J. C. Lodder, “Magnetic domains in Co thin films obliquely sputtered on a polymer substrate,” Phys. Rev. B, 63, 174441 (2001).
[3.19] J. M. Nieuwenhuizen and H. B. Haanstra, “Microfractography of thin films,” Philips Tech. Rev., 27, 87 (1966).
[3.20] R. N. Trait, T. Smy, and M. J. Brett, “Modeling and characterization of columnar growth in evaporated-films,” Thin Solid Films, 226, 196 (1993).
[3.21] J.-Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, and S.-Y. Lin, “Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods,” Optics Lett., 31(5), 601-603 (2006).
[3.22] “Application Note Four-Probe Resistivity and Hall Voltage,” http://www.ebookmanualbop.net/detail/application-note-four-probe-resistivity-and-hall-voltage-36229/ (Ebook Manuals).
[3.23] D. Heiman, “van der Pauw Hall Effect Measurement,” http://nuweb.neu.edu/dheiman/U600/vdPauw.pdf (Physics U600–AdvPhysLab-1, Northeastern University, 2009).
[3.24] Edwin Hall., “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics, 2 (3), 287–92 (1879).
[3.25] “Hall Effect,” http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/hall.html (HyperPhysics site).
[3.26] “Resistivity and Hall Measurements,” http://www.nist.gov/pml/div683/hall_ resistivity.cfm#sample (Physical Measurement Laboratory, The National Institute of Standards and Technology).
[3.27] G.-R. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Rapid self-assembly of Ni nanodots on Si substrate covered by a less-adhesive and heat-accumulated SiO2 layers,” Appl. Phys. Lett., 89(7), 073108 (2006).
[3.28] Y.-P. Zhao, D.-X. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE, 5219, 59–73 (2003).
[3.29] A. Lisfi and J.C. Lodder, “Magnetic domains in Co thin films obliquely sputtered on a polymer substrate,” Phys. Rev. B, 63(17), 174441 (2001).
[3.30] Y.-J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett., 94(14), 141111 (2009).
[3.31] F. Wang, H. Y. Yu, J. Li, X. Sun, X. Wang, and H. Zheng, “Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application,” Opt. Lett., 35(1), 40–42 (2010).
[3.32] F. Flory, L. Escoubas, and G. Berginc, “Optical properties of nanostructured materials:a review,” J. Nanophoton., 5, 052502 (2011).
[3.33] D. E. Aspnes and J. B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B, 20(8), 3292–3302 (1979).
[3.34] J. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
[3.35] B.-S. Chiou, J.-H. Tsai, “Antireflective coating for ITO films deposited on glass substrate,” J. Mater. Sci.: Mater. Electron., 10, 491-495 (1999).
[3.36] W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si:H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett. 99(3), 033107 (2011).
[3.37] H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett., 35(20), 3378–3380 (2010).
[3.38] J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photon., 1, 176–179 (2007).
[3.39] S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008).
[3.40] P. Yeh, Optical Waves in Layered Media (Wiley, Hoboken, New Jersey, 1998).
[3.41] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express, 15(20), 16986–17000 (2007).
[3.42] ASTMG173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
[3.43] C. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestial solar cells,” J. Appl. Phys., 51, 4494–4500 (1980).
[3.44] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater1, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater., 9, 239–244 (2010).
[3.45] B. Marion, B. Kroposki, K. Emery, J. del Cueto, D. Myers, and C. Osterwald, Validation of a photovoltaic module energy ratings procedure at NREL. Report No. NREL/ TP-520-26909 (1999).
[3.46] A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang, “Single crystalline mesoporous silicon nanowires,” Nano Lett., 9(10), 3550–3554 (2009).
[3.47] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett., 77(16), 2572 (2000).
[3.48] K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett., 92(16), 163103 (2008).
[3.49] K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B, 16(3), 1115–1122 (1998).
[3.50] Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett., 94(14), 141111 (2009).
[3.51] M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc., 52(8), 443–446 (1969).
[3.52] X. Xiao, G. Dong, J. Shao, H. He, and Z. Fan, “Optical and electrical properties of SnO2:Sb thin films deposited by oblique angle deposition,” Appl. Surf. Sci., 256(6), 1636–1640 (2010).
[3.53] Y.-C. Yao, M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express, 20(4), 3479–3489 (2012).
[3.54] D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, “Texturing industrial multicrystalline silicon solar cells,” Sol. Energy, 76(1-3), 277–283 (2004).
[3.55] M. Born and E. Wolf, Principles of optics, 7th edition (Cambridge University Press, Cambridge, U.K., 46, 1999).
[3.56] I. Tobias, C. del Canizo, and, J. Alonso, Handbook of Photovoltaic Science and Engineering (Wiley, New York, 2004).
[3.57] M. A. Green, Solar Cells: Operating Principles, Technology and System Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1982)
[3.58] E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc., 130(29), 9224–9225 (2008).
[4.1] E. Fred Schubert, Light-Emitting Diodes (Cambridge University Press; 2 edition, 2006).
[4.2] F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B, 64(8), 085207 (2001).
[4.3] V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett., 80(7), 1204–1206 (2002).
[4.4] A. Nakajima, Y. Sumida, M.H. Dhyani, H. Kawai, and E.M.S. Narayanan, “GaN-based super heterojunction field effect transistors using the polarization junction concept,” IEEE Electron Device Lett., 32(4), 542-544 (2011).
[4.5] S. Helkman, S. Keller, Y. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures,” J. Appl. Phys., 93(12), 10114 (2003).
[4.6] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishrab, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., 77(2), 250 (2000).
[4.7] I. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett., 69(18), 2701 (1996).
[4.8] S. Y. Bae, Y. H. Song, S. R. Jeon, D. M. Kim, Y. D. Jho, and D. S. Lee, “Pseudomorphic thick InGaN growth with a grading interlayer by metal organic chemical vapor deposition for InGaN/GaN p–i–n solar cells,” J CRYST GROWTH, 387, 23-28 (2014).
[4.9] G. F. Brown, J. W. Ager, W. Walukiewicz, J. Wu, “Finite element simulations of compositionally graded InGaN solar cells,” SOL ENERG MAT SOL C., 94(3), 478-483 (2010).
[4.10] W. Walukiewicz, J. W. Ager, K. M. Yu, Z. Liliental-Weber, J. Wu, S. X. Li, R. E. Jones, and J. D. Denlinger, “Structure and electronic properties of InN and In-rich group III-nitride alloys,” J. Phys. D, 39(5), R83 (2006).
[4.11] J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science, 327(5961), 60-64 (2010).
[4.12] D. Jena, S. Heikman, D. Green, D. Buttari, R. Coffie, H. Xing, S. Keller, S. DenBaars, J. S. Speck, U. K. Mishra, and I. Smorchkova, “Realization of wide electron slabs by polarization bulk doping in graded III–V nitride semiconductor alloys,” Appl. Phys. Lett., 81(23), 4395 (2002).
[4.13] O. Mayrock, H. J. Wunsche, and F. Henneberger, “Polarization charge screening and indium surface segregation in (In,Ga)N/GaN single and multiple quantum wells,” Phys. Rev. B, 62, 16870 (2000).
[4.14] B. Y. Ber, Y. A. Kudriavtsev, A. V. Merkulov, S. V. Novikov, D. E. Lacklison, J. W. Orton, T. S. Cheng, and C. T. Foxon, “Secondary ion mass spectroscopy investigations of magnesium and carbon doped gallium nitride films grown by molecular beam epitaxy,” Semicond. Sci. Technol., 13(1), 71-74 (1998).
[4.15] A. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, and ERATO/JST UCSB Group, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., 100(2), 023622 (2006).
[5.1] “Multijunction photovoltaic cell,” http://en.wikipedia.org/wiki/Multijunction_photovoltaic_cell (Wikipedia).
[5.2] “Multijunction solar cells,” http://ebookbrowsee.net/daniela-dragoman-photovoltaics-4-pdf-d141074529 (Daniela Dragoman Photovoltaics 4 pdf).
[5.3] M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law, and H. A. Atwater, “Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50%,” Appl. Phys. Lett., 102(3), 033901 (2013).
[5.4] “Sharp Develops Concentrator Solar Cell with World's Highest Conversion Efficiency of 44.4%,” http://sharp-world.com/corporate/news/130614.html (2013).
[5.5] J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, K. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett., 93(12), 123505 (2008).
[5.6] K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies, 2(3), 504–530 (2009).
[5.7] A. J. Nozik, “Quantum dot solar cells,” Physica E, 14(1-2), 115–120 (2002).
[5.8] R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev., Lett. 92(18), 186601 (2004).
[5.9] A. Franceschetti, J. M. An, and A. Zunger, “Impact ionization can explain carrier multiplication in PbSe quantum dots,” Nano Lett., 6(10), 2191–2195 (2006).
[5.10] M. Wolf, R. Brendel, J. H. Werner, and H. J. Queisser, “Solar cell efficiency and carrier multiplication in Si1-xGex alloys,” J. Appl. Phys., 83(8), 4213–4221(1998).
[5.11] S. Rühle, M. Shalom, and A. Zaban, “Quantum-Dot-Sensitized Solar Cells,” ChemPhysChem, 11, 2290–2304 (2010).
[5.12] C. -Y. Huang, D. -Y. Wang, C. -H. Wang, Y. -T. Chen, Y. -T. Wang, Y. -T. Jiang, Y. -J. Yang, C. -C. Chen, and Y. -F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano, 4(10), 5849–5854 (2010).
[5.13] S. Chatterjee, N. V. Valappil, and V. M. Menon, “Investigation of steady-state and time-dependent luminescence properties of colloidal InGaP quantum dots,” http://arxiv.org/ftp/arxiv/papers/1207/1207.3870.pdf
[5.14] Y. -J. Lee, C. -J. Lee, and C. -M. Cheng, “Enhancing the conversion efficiency of red emission by spin-coating CdSe quantum dots on the green nanorod light-emitting diode,” Opt. Express, 18(104), A554-A561 (2010).
[5.15] H. Kato, S. Adachi, H. NakanishiI, and K. Ohtsuka, “Optical properties of (AlxGa1-x)0.5In0.5P quaternary alloys,” Japan. J. Appl. Phys., 33(1A), 186-192 (1994).
[5.16] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set) (McGraw Hill Professional, New York, 2009).
[5.17] D. Souri and K. Shomalian, “Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60−x) V2O5–40TeO2–xSb2O3 glasses,” J. Non-Cryst. Solids, 355(31-33), 1597–1601 (2009).
[5.18] ASTMG173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
[5.19] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express, 15(20), 16986–17000 (2007).
[5.20] C.-Y. Huang, D.-Y. Wang, C.-H. Wang, Y.-T. Chen, Y.-T. Wang, Y.-T. Jiang, Y.-J. Yang, C.-C. Chen, and Y.-F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” ACS Nano, 4(10), 5849–5854 (2010).
[6.1] P. Subramaniam, S. J. Lee, S. Shah, S. Patel, V. Starovoytov, and K.-B. Lee, “Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery,” Adv. Mater., 24(29), 4014–4019 (2012).