簡易檢索 / 詳目顯示

研究生: 邱智仁
論文名稱: 運用自我解釋策略結合多重表徵對於氣體動力論概念學習的影響
指導教授: 吳心楷
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 121
中文關鍵詞: 多重表徵自我解釋氣體動力論
論文種類: 學術論文
相關次數: 點閱:129下載:44
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三種多重表徵的教材讓學生閱讀,學生閱讀研究者所指定的教材時必須依提示產生自我解釋,而研究對象為高中二年級的學生二十七名,平均分配為文本組、圖文本組、動畫文本組三組,資料收集的來源為前、後測與學生自我解釋的回答。研究目的為探討運用自我解釋策略結合多重表徵對於氣體動力論概念學習的影響,研究結果顯示:
    (一) 多重表徵對於氣體動力論概念學習成效(後測)並無明顯的影響,前、後測驗的進步分數是以動畫文本組學生進步的分數最多,文本組次之,圖文本組最少,動畫文本組與圖文本組之間有顯著差異。
    (二) 多重表徵對於學生自我解釋推論的數量上並無明顯的影響;自我解釋的正確程度以動畫文本組學生最高,圖文本組次之,文本組最低,動畫文本組與其他兩組之間有顯著差異。
    (三) 自我解釋的推論類型出現的次數由高而低依次為:相關型推論、邏輯型推論、參考型推論、常識型推論類、公式型推論、統整型推論、類比型推論、比較型推論,其中相關型推論出現的頻率幾乎佔了所有推論的一半。文本組擅長於參考型推論,圖文本組擅長於常識型推論與公式型推論。動畫文本組擅長於相關型推論、比較型推論、邏輯型推論及統整型推論。
    (四) 多重表徵對於學生所呈現的氣體動力論概念:動畫文本組表現最正確,圖文本組次之,而文本組表現是三組中較不好。所有概念類型是以「氣體分子數目」及「氣體分子運動」產生的另有概念的類型為最多。
    綜合量化與質化分析結果顯示,提示自我解釋可以促進學生在氣體動力論的概念學習,多重表徵的教材促進學生概念發展的獲益程度也不同。本研究詳細探討學生利用多重表徵以自我解釋為策略的概念學習過程,供未來相關研究參考。

    This research aims at probing into the effects of multiple representations on students learning of kinetic theory of gases. This research provided three different texts with multiple representations for students to read who should apply to the prompts to generate self explanations on this appointed texts. Participants(27 eleventh graders from a public high school) were randomly assigned to three groups—text group (provided with only texts), picture group (with pictures and texts),and animation group (with animations and texts). Data sources included pre-test and post-test of concepts, and self explanations generated by students. The main results of this study are showed belows.

    1. Multiple representations had no significant difference on pre-test in kinetic theory of gases. Students in animation group gained the most scores in the difference of post-test and pre-test scores, secondly text group, the last picture group. There were significant difference between animation group and picture group.
    2. Multiple representations had no significant difference on the students generating number of self explanations. The best degree of accuracy on self explanations attributed to animation group, secondly picture group, the last text group. Animation group had significant difference with the other two groups.
    3. The frequency of inference types on self-explanation are listed in order: cognate, logic, referential, commonsense, formular, integrated, analogical, comparative, of which cognate inference almost occupy half of the whole inference. Picture group are good at commonsense and formular inference while animation group are good at cognate, comparative, logic and integrated inference.
    4. Multiple representations displayed the concept in kinetic theory of gases: the rate of accuracy performed best by animation group, secondly picture group, the last text group. Alternative conception caused from kinetic molecule and kinetic molecular motion generate the most quantity among all types of concept

    To synthesize the research study on quantitative and qualitative analysis, prompt self explanations can facilitate students’ learning in kinetic theory of gases and students can benefit from different teaching materials of representation. This research has made a thorough inquiry on multiple representations used as self explanations learning process. I believe the results can be provided for reference on concerned study in the future without fail.

    第壹章 緒論--------------------------- 1 第一節 研究背景與動機------------ 1 第二節 研究目的與研究問題-------- 3 第三節 名詞釋義----------------------- 3 第四節 研究範圍與限制----------------- 4 第貳章 文獻探討----------------------- 5 第一節 表徵與多重表徵------------ 5 第二節 電腦動畫模擬與動態表徵--------- 13 第三節 自我解釋------------------ 16 第四節 氣體動力論的發展與另有概念----- 23 第參章 研究方法----------------------- 30 第一節 研究流程------------------ 30 第二節 研究對象------------------ 32 第三節 研究工具----------------------- 32 第四節 研究課程設計------------------- 36 第五節 資料收集與分析----------------- 46 第肆章 研究結果----------------------- 54 第一節 前後測資料的探討---------- 54 第二節 自我解釋數量與正確程度之探討59 第三節 自我解釋的類型----------------- 60 第四節 氣體動力論概念的探討----------- 86 第伍章 結論與建議--------------------- 99 第一節 結論---------------------- 99 第二節 討論---------------------- 101 第三節 建議--------------------------- 106 參考文獻------------------------------- 109 附錄一:氣體動力論概念測驗------------- 113 附錄二:自我解釋範例練習教材----------- 120

    史嘉章(2001)。發展二階層試題以探討國高中學生氣體迷思概念。台北市:國立台灣師範大學科學教育研究所碩士論文。
    左台益(2001)。高中生建構橢圓多重表徵之認知特性。科學教育學刊, 第九卷第三期, 281-297。
    吳明珠(2004)。從科學史中理論模型的發展暨認知學心智模式探討化學概念的理解-層析理論的模型化案例。台北市:國立台灣師範大學科學教育研究所碩士論文。
    呂益準(2005)。以混成軌域之電腦多媒體教導學生判斷分子形狀。台北市:國立台灣師範大學化學研究所碩士論文。
    林育聖(2001)。自我解釋對程式語言IF敘述學習的影響。台北市:國立台灣師範大學資訊教育研究所碩士論文。
    邱美虹(1994)。從”自我解釋”所產生的推論探究高中生化學平衡的學習。師大學報,39,489-524。
    邱美虹(1996)。學習策略與科學學習。科學教育月刊,191,2-15。
    邱美虹(2005)。台灣地區中小學生化學概念之心智模式與成因之研究(I)-子計畫二:台灣地區中學生「原子/分子/粒子、化學平衡、酸鹼鹽」結案報告
    張欣怡(1997) 。地球科學不同課文表徵教材對學習表現之研究。台北市:國立台灣師範大學科學教育研究所碩士論文,未出版。
    張春興(1989)。張氏心理學辭典。台北市:東華。
    張春興(1997)。教育心理學-三化取向的理論與實踐。台北:東華書局。
    張國恩(民91)。從學習科技的發展看資訊融入教學的內涵,北縣教育,41,16-25
    張基成(民86)。開發思考與創造力之知識建構工具與認知學習環境的探討:電腦的革新應用。教學科技與媒體,33,36-45。
    莊雅茹(1996)。CAL軟體動畫介面設計,教學科技與媒體,28期,13-18頁。
    許良榮(1996)。圖形與科學課文學習關係的探討。教育研究資訊, 4(4),121-131。
    陳盈吉(2003)。探討動態類比對於科學概念學習與概念改變歷程之研究-以國二學生學習氣體粒子概念為例。台北市:國立台灣師範大學科學教育研究所碩士論文。
    陳郡鳳(2004)。探討理想氣體動力論之建模教學對高一學生建構微觀氣體粒子運動心智模式的影響。台北市:國立台灣師範大學科學教育研究所碩士論文。
    陳婉茹(2003)。探討動態類比對於化學平衡概念學習之研究-八年級學生概念本體及心智模式之變化。台北市:國立台灣師範大學科學教育研究所碩士論文。
    陳雅芬(2000)。以凱利方格法探討學生對於氣體的概念理解。台北市:國立台灣師範大學科學教育研究所碩士論文。
    黃怡菱(2002)。職前及在職國中自然科教師氣體粒子迷思概念之研究。台北市:國立台灣師範大學科學教育研究所碩士論文。
    劉俊庚(2001)。迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設 分析模式探討其意涵與影響。台北市:國立台灣師範大學科學教育研究所碩士論文。
    鄭秀芬(2002)。高中生的波動概念探究與電腦輔助學習教材研製。台北市:國立台灣師範大學物理研究所碩士論文。
    鄭昭明(1996)。認知心理學:理論與實踐。台北市:桂冠圖書公司。
    Aleven, V. A. W. M. M., & Koedinger, K.R. (2002). An effective metacognitive strategy: Learning by doing and explaining with a computer-based cognitive tutor. Cognitive Science, 26, 147-179.
    Anisworth, S.(1999). The functions of multiple representations. Computer and Education, 33, 131-152.
    Benson, D.L., Wittrock, M.C., & Baur, M.E.(1993). Students’ preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.
    Calin-Jageman, R. J., & Ratner, H. H. (2005). The role of encoding in the self-explanation effect. Cognition & Instruction, 23(4), 523-543.
    Chi M . T .H. Self-explaining expository texts(2000). The dual process of generating inferences and repairing mentaI models. In R. Glaser(Ed.), Advances in InstructionaI Psycholog, Mahwah, NJ:Erlbaum, 161-238.
    Chi M. T. H.(1997). Quantifying qualitative analyses of verbal data-a practical guide, Journal of the Learning Sciences, 6(3), 271-315.
    Chi, M. T. H., Bassok, M., Lewis, M.W., Reiman, P., & Glaser, R. (1989). Self- Explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.
    Chi, M. T. H., deLeeuw, N., Chiu, M., & Lavancher, C. (1994). Eliciting self- explanations improves understanding. Cognitive Science, 18, 439-477.
    Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-152.
    Davis, E. A. (2000). Scaffolding students' knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 20, 8, 819-837.
    Driver, R., & Erickson, G. (1983). Theories in action: Some theoretical and empirical issues in the study of students' conceptual frameworks in science. Studies in Science Education, 10, 37-60.
    Ferguson-Hessler, M.G. M., & de Jong, T. (1990). Studying physics texts: Differences in study processes between good and poor students. Cognition and Instruction, 7, 41-54.
    Lesh, R. (1987). The Evolution of Problem Representation in the Presence of Powerful Conceptual Amplifiers. Problems of Representation in the Teaching and Learning of Mathematics. Edited by Claude Janvier: Lawrence Erlbaum, Hillsdale, NJ. P 33-40.
    Levie, W. H., & Lentz, R. (1982). Effect of text illustrations: A review of research. Educational Communication and Technology, 30(4), 195-232.
    Mayer, R. E. & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning, Journal of Educational Psychology , 86(3), 389-401.
    Mayer, R.E., and Anderson (1992). The Instructive Animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology , 84(4), 444-452.
    Mayer, W. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1-19.
    McNamara, D. S. (2004). SERT: self-explanation reading training. Discourse Processes, 38(1), 1-30.
    Nathan, M. J., Mertz, K., & Ryan, B. (1994). Learning through self-explanation of mathematical examples: Effects of cognitive load. Annual Meeting of the American Educational Research Association.
    Neuman, Y., Lebowitz, L., & Schwarz, B. (2000). Patterns of verbal mediation during problem solving: A sequential analysis of self-explanation. Journal of Experimental Education, 68(3), 197-223.
    Novick, S., & Nussbaum, J.(1978). Jouior high school pupils’ understanding of the particulate nature of matter : a interview study. Science Education, 62(3), 273-281.
    Novick, S., & Nussbaum, J.(1981). Pupils’ understanding of the particulate nature of matter : a cross-age study. Science Education, 65(2), 187-196.
    Paivio, A. (1971). Imagery and Verbal Process. New York: Holt, Rinehart & Winston.
    Paivio, A. (1986). Dual coding theory. In Mental Representations: A dual coding approach. New York: Oxford university.
    Paivio, A. (1991). Images In Minds: The Evolution of A Theory. New York: Harvester Wheatsheaf.
    Pillow, B. H., Mash, C., & Hill, S. A. V. (2002). Facilitating children’s understanding of misinterpretation: Explanatory efforts and improvements in perspective taking. The Journal of Genetic Psychology, 163(2), 133-148.
    Pirolli, P. L., & Recker, M. (1994). Learning strategies and transfer in the domain of programming. Cognition and Instruction, 12, 235-275.
    Solomon, J. (1992). Four frames for a field. In P. J. Black & A. M. Lucas(Eds.), Children's Informal Ideas in Science, 85-101. London: Routledge
    VanLehn K, Jones R M(1993b). Learning by explaining examples to oneself:A computational model. In: SChipman & A L Meyrowitz (Eds.). Foundations of knowledge acquisition:Cognitive models of complex learning, Boston:Kluwer, 25-82.
    VanLehn, K., Jones, R. M, & Chi, M. T. H. (1992). A modal of the self-explanation effect. The Journal of the Learning Sciences, 2, 1-59.
    White, B., Christina, V., & Schwarz.(1998). Alternative Approaches to Using Modeling and Simulation Tools for Teaching Science.
    Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting conceptual understanding of chemical representations: students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821 - 842.

    QR CODE