研究生: |
陳聖明 Chen, Sheng-Ming |
---|---|
論文名稱: |
標記效果對國中數理資優生與普通生學習直線運動概念的測驗表現和眼動型態之影響 Signaling Effect on Test Performance and Eye Tracking of Learning Linear Motion Concept for Mathematically and Scientifically Talented Students and Non-Gifted Students in Junior High School |
指導教授: |
潘裕豐
Pan, Yu-Fong 陳學志 Chen, Hsueh-Chih |
學位類別: |
博士 Doctor |
系所名稱: |
特殊教育學系 Department of Special Education |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 標記效果 、眼動型態 、數理資優生 、直線運動概念 |
英文關鍵詞: | signaling effect, eye movements, mathematically and scientifically talented (MST) students, linear motion concept |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.DSE.001.2019.F02 |
論文種類: | 學術論文 |
相關次數: | 點閱:217 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科學圖文常使用標記來幫助讀者學習科學知識。本研究旨在探討標記效果對國中數理資優生與普通生學習直線運動概念的測驗表現及學習歷程的差異,有助於了解標記的適用性。本研究操弄教材標記的有無,對國中數理資優生與普通生學習直線運動概念的測驗表現、認知負荷和眼動型態之影響,也探討空間能力和標記效果對直線運動概念的學習是否具有調節作用。本研究以國中數理資優生與普通生為對象,數理資優生32位,普通生56位,共計88位。本研究分為研究一與研究二。研究一進行紙本測驗、認知負荷及空間能力的探討,研究二則是進行眼動實驗。本研究結果發現如下:
1、在測驗表現方面,標記組的測驗表現優於無標記組,表示標記能提升國中生直線運動概念的學習成效。數理資優生不論閱讀有無標記版本教材,其測驗表現仍優於普通生。
2、有無標記對於國中數理資優生和普通生學習直線運動概念的認知負荷沒有明顯差異。
3、空間能力和有無標記對學習表現不具有調節效果,但空間能力對科學圖文的學習表現具有影響力。
4、在眼動資料方面,標記提升讀者在圖示及次圖的總凝視時間,縮短相對應圖文的搜尋時間。國中數理資優生能運用標記,有較多的文與上圖之間的掃視次數。國中生科學圖文的學習,仍以文為導,普通生比數理資優生投入更多時間在理解文本和標題。
5、相對應圖文的搜尋時間、參照次數和整個畫面的平均凝視時間對學習表現具有顯著關聯,以及整個畫面的平均凝視時間對學習表現的預測力最佳。
綜之,根據上述研究結果,研究者提出對直線運動概念教材編製和教學及未來研究提出具體建議。
Illustrated Science text often uses signaling to facilitate readers learning science knowledge. This purpose of this study was to explore signaling effect on learning performance and process of mathematically and scientifically talented (MST) students and non-gifted students in junior high school, which contributes to understanding its applicability. We investigated the learning performance, cognitive loading, and eye movements of middle-school MST students and non-gifted students reading materials with or without signals (signal group vs. non-signal group). In addition, we inspected spatial abilities and the signaling effect as potential moderator of effectiveness of the different help facility. A total sample was 88 subjects including 32 MST students and 56 non-gifted students. Two experiments were conducted. Experiment 1 was paper-pencil group tests, mental effort rating, and space relation test for the measurements of their learning performance, cognitive loading and spatial ability.
Results indicated that: (1) Learning performance of signal group was higher than non-signal group. This implied that signaling could promote middle-school students’ learning performance of linear motion concept; Furthermore, MST students had higher performance scores than non-gifted students whether reading material with or without signals. (2) Signaling effect reducing cognitive loading of MST students learning linear motion concept and non-gifted students in junior high school was not significantly different. (3) Spatial ability and signaling effect didn’t significantly moderate learning performance of linear motion concept, but spatial ability could influence learning performance (4) Through eye movement patterns, signaling increased total fixation durations of diagrams and sub-diagrams, but the interval of time locating revelant information between text and diagrams were shortened. MST students were better at using signaling than non-gifted students as they performed more numbers of saccade between text and up diagram. Middle school students spent most of reading time in text, and non-gifted took more to understand text and article title. (5) Under the function of signals, learning performance was significantly related with visual-search process, transitions of corresponding text and diagram, and average fixation duration. To predict of learning performance, average fixation duration was the best predictor. According to the results, the research proposed several suggestions for the material making and teaching relevance to linear motion concept and future studies.
一、中文部分
方靜瑩(2010):數理資優生與普通生科學閱讀能力與閱讀理解策略之比較研究(未出版)。國立屏東大學特殊教育學系碩士論文,屏東。
呂金燮、李乙明(譯)(2005):資優課程(J. VanTassel-Baska著:Comprehensive curriculum for gifted learners)。臺北:五南。(原著出版於1994)。
身心障礙與資賦優異學生鑑定辦法(2013):中華民國102年9月2日教育部臺教學(四)字第1020125519B號令發布。
柯華葳、陳明蕾、廖家寧(2005):詞頻、詞彙類型與眼球運動型態的關係。中華心理學刊,47(4),381-398。
教育部(2007):智慧的父母-認識資優教育。臺北:教育部特殊教育工作小組。
郭靜姿、張馨仁、張玉佩、周坤賢、林燁虹、陳雪君、林慶波(2012):高中數理資優班學生心理特質與大腦結構之研究。教育心理學報,43(4),805-832。
陳琪瑤(2013):以測驗表現和眼動型態探討圖示調整在不同幾何命題判讀作業之影響(未出版)。國立臺灣師範大學心理與輔導學系博士論文,臺北。
陳琪瑤、吳昭容(2012):幾何證明文本閱讀的眼動研究:圖文比重及圖示著色效果。教育實踐與研究,25(2),35-66。
陳學志、賴惠德、邱發忠(2010):眼球追蹤技術在學習與教育上的應用。教育科學研究期刊,55(4),39-68。
路君約、盧欽銘、歐滄和(1994):區分性向測驗(第五版)。臺北:中國行為科學社。
鄒小蘭(譯)(2012):特殊族群資優教育(B. A. Trail著:Twice-exceptional gifted children: understanding, teaching, and counseling gifted students)。臺北:華騰文化。(原著出版於2011)。
潘裕豐、李乙明、于曉平、蔡桂芳、鄭聖敏、鄺靜辰、李偉俊、黃曉嵐、柯麗卿、桑慧芬(譯)(2012):資優教育概論(G. A. Davis, B. S. Rimm, & R. D. Siegle著:Education of the gifted and talented)。臺北:華騰文化。(原著出版於2011)。
蔡介立、顏妙璇、汪勁安(2005):眼球移動測量及中文閱讀研究之應用。應用心理研究,28,91-104。
簡郁芩(2012):從圖文閱讀的眼動型態建構與驗證機械動態表徵的認知模式(未出版)。國立臺灣師範大學心理與輔導學系博士論文,臺北。
二、英文部分
Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33, 131-152.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183-198.
Assouline, S., & Lupkowski-Shoplik, A. (2011). Curricula and materials. In S. Assouline & A. Lupkowski-Shoplik (Eds.), Developing math talent: A guide for educating gifted and advanced learners in math (2nd ed., pp. 219-253). Waco, TX: Prufrock.
Ayres, P., & Sweller, J. (2005). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 135-146). New York, NY: Cambridge University Press.
Baddeley, A. D. (1992). Working memory. Science, 255(5044), 556-559.
Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423.
Bartholomé, T., & Bromme, R. (2009). Coherence formation when learning from text and pictures: What kind of support for whom? Journal of Educational Psychology, 101(2), 282-293.
Boucheix, J. M., & Guignard, H. (2005). What animated illustrations conditions can improve technical document comprehension in young students? Format, signaling and control of the presentation. European Journal of Psychology of Education, 20, 369-388.
Boucheix, J. M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20, 123-135.
Britton, B. K., Glynn, S. M., Meyer, B. J. F., & Penland, M. J. (1982). Effects of text structure on use of cognitive capacity during reading. Journal of Educational Psychology, 74, 51-61.
Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14(1), 5-26.
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytical studies. NY: Cambridge University Press.
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293-332.
Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10, 1-20.
Chen, S. C., Hsiao, M. S., & She, H. C. (2015). The effects of static versus dynamic 3D representations on 10th grade students' atomic orbital mental model construction: Evidence from eye movement behaviors. Computers in Human Behavior, 53, 169-180.
Cohen, J. (1988). Statistical power analysis for the behavioral science (2nd .ed.). NJ: Lawrence Erbaum Associates.
Cook, M., Carter, G., & Wiebe, E. N. (2008). The interpretation of cellular transport graphics by students with low and high prior knowledge. International Journal of Science Education, 30(2), 239-261.
Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92, 848-867.
Dai, D. Y. (2012). From smart person to smart design: Cultivating intellectual potential and promoting intellectual growth through design research. In D. Y. Dai (Ed.), Design research on learning and thinking in educational settings: Enhancing intellectual growth and functioning (pp. 3-40). New York, NY: Routledge.
De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21, 113-140.
De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2007). Attention cueing as a means to enhance learning from an animation. Applied Cognitive Psychology, 27, 731-746.
De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2010). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20, 111-122.
Fang, Z. (2006). The language demands of science reading in middle school. International Journal of Science Education, 28, 491-520.
Folker, S., Ritter, H., & Sichelschmidt, L. (2005). Processing and integrating multimodal material - The influence of color coding. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of 27th naaual conference of the cognitive science society (pp. 690-695). Mahwah, NJ: Lawrence Erlbaum.
Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101, 371-395.
Haber, R., & Hershenson, M. (1973). The psychology of visual perception. New York, NY: Holt, Rinehart & Winston.
Hannus, M., & Hyönä, J. (1999). Utilization of illustration during learning of science textbook passages among low- and high-ability children. Contemporary Educational Psychology, 24(2), 95-123.
Harber, J. N. (1983). The effects of illustrations on the reading performance of learning disabled and normal children. Learning Disability Quarterly,6(1), 55-60.
Hays, T. A. (1996). Spatial abilities and the effects of computer animation on short-term and long-term comprehension. Journal of Educational Computing Research, 14, 139-155.
Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 1084-1102.
Hegarty, M. (2005). Multimedia learning about physical system. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp.447-465). New York, NY: Cambridge University Press.
Hegarty, M. Carpenter, P., & Just, M. (1991). Diagrams in the comprehension of scientific texts. In R. Barr, M. Kamil, P. Mosenthal, & P. Pearson (Eds.), Handbook of reading research (pp. 641-668). Mahawah, NJ: Erlbaum.
Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32, 717-742.
Hegarty, M., & Kozhevnikov, M. (1999). Spatial abilities, working memory and mechanical reasoning. In J. Gero, & B. Tversky (Eds.), Visual and spatial reasoning in design (pp. 221-241). Sydney, Australia: University of Sydney.
Hegarty, M., & Kriz, S. (2008). Effects of knowledge and spatial ability on learning from animation. In R. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 3-29). Cambridge, England: Cambridge University Press.
Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121-169). Cambridge, England: Cambridge University Press.
Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21(4), 325-360.
Höffler, T. N. (2010). Spatial ability: Its influence on learning with visualizations-A meta-analysis review. Educational Psychology Review, 22, 245-269.
Höffler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations-Evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27, 209-216.
Höffler, T. N., Sumfleth, E., & Leutner, D. (2006). The role of spatial ability when learning from an instructional animation or a series of static pictures. In J. Plass (Ed.), Proceedings of the NYU symposium on Technology and Learning. New York, NY: New York University.
Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22, 392-404.
Hung, Y. N. (2014). “What are you looking at?” an eye movement exploration in science text reading. International Journal of Science and Mathematics Education, 12(2), 241-260.
Isaak, M. I., & Just, M. A. (1995). Constraints on the processing of rolling motion: The curtate cycloid illusion. Journal of Experimental Psychology: Human Perception and Performance, 21(6), 1391-1408.
Jamet, E. (2014). An eye-tracking study of cueing effects in multimedia learning. Computer in Human Behavior, 32, 47-53.
Jamet, E., Gavota, M., & Quaireau, C. (2008). Attention guiding in multimedia learning. Learning and Instruction, 18, 135-145.
Jarodzka, H., Scheiter, K., Gerjets, P., & Van Gog, T. (2010). In the eye of the beholder: How experts and novices interpret dynamic stimuli. Learning and instruction, 20, 146-154.
Jeung, H.-J., Chandler, P., & Sweller, J. (1997). The role of visual indicators in dual sensory mode instruction. Educational Psychology, 17, 329-343.
Jian, Y.-C. (2016). Fourth graders’ cognitive processes and learning strategies for reading illustrated biology texts: Eye movement measurements. Reading Research Quarterly, 51(1), 93-109.
Jian, Y.-C. (2018). Reading instruction facilitate signaling effect on science text for young readers: An eye-movement study. International Journal of Science and Mathematics Education, 1-20.
Jian, Y.-C., & Wu, C.-J. (2015). Using eye tracking to investigate semantic and spatial representations of scientific diagrams during text-diagram integration. Journal Science Education and Technology, 24, 43-55.
Jian, Y.-C., & Wu, C.-J. (2016). The function of diagram with numbered arrows and text in helping readers construct kinematic representations: Evidenced from eye movements and reading tests. Computes in Human Behavior, 61, 622-632.
Jian, Y.-C., & Ko, H.-W. (2017). Influences of text difficulty and reading ability on learning illustrated science texts for children: An eye movement study. Computers & Education, 113, 263-279.
Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity effect in multimedia learning. Journal of Experimental Psychology: Applied, 18(2), 178-191.
Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8, 441-480.
Kaakinen, J. K., Hyönä, J., & Keenan, J. M. (2003). How prior knowledge, working memory capacity, and relevance of information affect eye-fixations in expository text. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 447-457.
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23-31.
Kalyuga, S., Chandler, P. & Sweller, J. (1998). Levels of expertise and instructional design. Human Factors, 40, 1-17.
Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13, 351-371.
Keller, T., Gerjets, P., Scheiter, K., & Garsoffky, B. (2006). Information visualizations as tools for knowledge acquisition: The impact of dimensionality and color coding. Computers in Human Behavior, 22, 43-65.
Kirk, S., Gallagher, J. J., Anastasiow, N. J. & Coleman, M. R. (2006). Educating Exceptional Children (11th ed.). Boston, MA: Houghton Mifflin.
Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31, 549-579.
Kriz, S., & Hegarty, M. (2007). Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies, 65, 911-930.
Lemke, J. (1998). Multiplying meaning: Visual and verbal semiotics in sciemtific text. In J. R. Martin & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses of science (pp. 87-113). London, UK: Routledge.
Lin, L., & Atkinson, R. K. (2011). Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education, 56(3), 650-658.
Lorch, R. F., Jr. (1989). Text signaling devices and their effects on reading and memory processes. Educational Psychology Review, 1, 209-234.
Mason, L., Pluchino, P., & Tornatora, M. C. (2013a). Effects of picture labeling on science text processing and learning: Evidence from eye movements. Reading Research Quarterly, 48(2), 199-214.
Mason, L., Pluchino, P., Tornatora, M. C., & Ariasi, N. (2013b). An eye-tracking study of learning from science text with concrete and abstract illustrations. The Journal of Experimental Education, 81(3), 356-384.
Mason, L., Tornatora, M. C., & Pluchino, P. (2013c). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60, 95-109.
Mautone, P. D., & Mayer, R. E. (2001). Signaling as a cognitive guide in multimedia learning. Journal of Educational Psychology, 93, 377-389.
Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32, 1-19.
Mayer, R. E. (2001). Multimedia learning. New York, NY: Cambridge University Press.
Mayer, R. E. (2002). Cognitive theory and the design of multimedia instruction: anexample of the two-way street between cognition and instruction. In D. F.Halpern & M. D. Hakel (Eds.), Applying the science of learning to universityteaching and beyond (pp. 55-72). San Francisco, CA: Jossey-Bass.
Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp.31-48): New York, NY: Cambridge University Press.
Mayer, R. E. (2008). Learning and Instruction (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York, NY: Cambridge University Press.
Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20, 167-171.
Mayer, R. E., & Johnson, C. I. (2008). Revising the redundancy principle in multimedia learning. Journal of Educational Psychology, 100(2), 380-386.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia. Educational Psychologist, 38(1), 43-52.
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86, 389-401.
Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. E. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied, 11, 256-265.
Mayer, R. E., Steinhoff, K., Bower, G., & Mars, R. (1995). A generative theory of textbook design: Using annotated illustrations to foster meaningful learning of science text. Educational Technology Research and Development, 43, 31-43.
McTigue, E. M. (2009). Does multimedia learning theory extend to middle-school students? Contemporary Educational Psychology, 34, 143-153.
McTigue, E. M., & Flowers, A. C. (2011). Science visual literacy: Learners’ perceptions and knowledge of diagrams. The Reading Teacher, 64(8), 578-589.
Meyer, B. J. F. (1975). The organization of prose and its effects on memory. New York, NY: Elsevier.
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial workingmemory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology, 130, 621-640.
Moore, P.J., & Scevak, J. J. (1997). Learning from texts and visual aids: A developmental perspective. Journal of Research in Reading, 20(3), 205-223.
Norman, R. R. (2012). Reading the graphics: What is the relationship between graphical reading processes and students comprehension? Reading and Writing, 25(3), 739-774.
O’Boyle, M. W. (2008). Mathematically gifted children: Developmental brain characteristics and their prognosis for well-being. Roeper Review, 30(3), 181-186.
Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in human behavior, 26, 110-117.
Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computer & Education, 53(2), 445-453.
Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, 429-434.
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1-4.
Paivio, A. (1986). Mental representation: A dual coding approach. New York, NY: Oxford University Press.
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45(3), 255-287.
Pass, F., Tuovinen, J. E., Tabbers, H. K., & Van Ferven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63-71.
Peeck, J. (1993). Increasing picture effects in learning from illustrated text. Learning and Instruction, 3, 227-238.
Perkins, D. (1995). Outsmarting IQ: The emerging science of learnable intelligence. New York, NY: The Free Press.
Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24(3), 229-240.
Rayner, K. (1998). Eye movements and information processing: 20 years of research. Psychological Bulletin, 124 (3), 372-422.
Rayner, K., Rotello, C. M., Stewart, A. J., Keir, J., & Duffy, S. A. (2001). Integrating text and pictorial information: Eye movements when looking at print advertisement. Journal of Experimental Psychology: Applied, 7(3), 219-226.
Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105, 125-157.
Reid, D. J. & Beveridge, M. (1986). Effects of text illustration on children’s learning of a school science topic. The British Journal of Educational Psychology, 56(3), 294-303.
Richter, J., Scheiter, K., & Eitel, A. (2016). Signaling text-picture relations in multimedia learning: A comprehensive meta-analysis. Educational Research Review, 17, 19-36.
Salthouse, T. A, Babcock, R. L., Mitchell, D. R. D., Palmon, R., & Skovronek, E. (1990). Sources of individualdifferences in spatial visualization ability. Intelligence, 14, 187-230.
Scheiter, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting integration of highlighted text and diagram elements. Learning and Instruction, 36, 11-26.
Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look a split visual attention in system- and self-paced instruction in multimedia learning. Learning and Instruction, 20(2), 100-110.
Schnotz, W. (2003). Toward an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 101-120.
Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 49-69). New York, NY: Cambridge University Press.
Schnotz, W. (2014). Integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp.72-103). New York, NY: Cambridge University Press.
Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representations. Learning and Instruction, 13, 141-156.
Schroeder, S., Richter, T., McElvany, N., Hachfeld, A., Baumert, J., & Schnotz, W. (2011). Teachers’ beliefs, instructional behaviors, and students’ engagement in learning from texts with instructional pictures. Learning and Instruction, 21, 403-415.
Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and languageprocessing: An individual differences approach. Journal of Experimental Psychology: General, 125, 4-27.
She, H. C., & Chen, Y. Z. (2009). The impact of multimedia effect on science learning: Evidence from eye movements. Computers & Education, 53, 1297-1307.
Sweller, J., Van Merriёnboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251-296.
Tabbers, H. K., Marten, R. L., & Van Merriënboer J. J. G. (2004). Multimedia instructions and cognitive load theory: Effects of modality and cueing. British Journal of Educational Psychology, 74, 71-81.
Urhahne, D., Nick, S., & Schanze, S. (2009). The effect of three-dimensional simulations on the understanding of chemical structures and their properties. Research in Science Education, 39(4), 495-513.
Van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning. Learning and Instruction, 20, 95-99.
Van Gog, T., Paas, F., Van Merriёnboer, J. J. G., & Witte, P. (2005). Uncovering the problem-solving process: Cued retrospective reporting versus concurrent and retrospective reporting. Journal of experimental psychology: Applied, 11(4), 237-244.
Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345-376.
Yang, K. L., Lin, F. L., & Wang, Y. T. (2008). The effects of proof features and question probing on understanding geometry proof. Contemporary Educational Research Quarterly, 16(2), 77-100.