研究生: |
陳威廷 Chen, Wei- Ting |
---|---|
論文名稱: |
鈷摻雜二硫化鐵/磷化鐵複合材料的合成與其作為析氫觸媒之應用 Novel Synthesis of Cobalt-doped Iron Sulfide/Iron Phosphide as Heterostructure Catalyst for Hydrogen Evolution Reaction |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 產氫 、電解水 、二硫化鐵 、異質結構 |
英文關鍵詞: | Hydrogen evolution reaction (HER), Water electrolysis, FeS2, Heterostructure |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球人口快速成長與能量消耗情況下,再生能源的需求逐漸受到關注。在眾多替代能源中,電解水產氫 (water electrolysis) 被視為最具發展潛力之一,因其方法簡單、產生氫氣濃度高且過程中不會產生危害地球的溫室氣體,例如二氧化碳及甲烷等。在析氫反應中,鉑金屬之類的貴金屬研究出具有高效能的催化活性,但其價格昂貴且含量少,受到許多限制。因此開發出新穎、便宜且地表含量豐富的析氫觸媒成為我們重要的研究方向。
本研究中,我們以化學氣相沉積法合成出鈷摻雜二硫化鐵/磷化鐵複合材料,由硫與磷產生之異質結構並提高整體比表面積,而露出更多活化位置,藉此特性可有效提升其在析氫觸媒上的表現。
鈷摻雜二硫化鐵/磷化鐵比起一些文獻報導的純硫化物、純磷化物和非貴金屬在酸性環境下中具有更好的析氫活性效率。在極化曲線量測中發現,其異質結構之 Onset potential 約 30 mV ,Tafel slope 值計算約 41.5 mV/dec ;對於電流與時間相對關係下持續的測量一個星期,鈷摻雜二硫化鐵/磷化鐵仍維持其初始電流量,展現其高穩定度。
In condition of rapid growth global population and energy consumption, the issues have triggered the urgent demand for renewable and clean energy sources.
Water electrolysis has been considered as one of the most potential for alternative energy in the future. It has many advantages, such as easy in use, high efficiency, high purity in producing hydrogen, , etc., during the process of releasing energy, hydrogen is not produce green-house-effect gas, such as CO2 or CH4.
In the numerous of noble metals, platinum has been reported as high efficiency in the hydrogen evolution reaction (HER), whereas its high cost and low abundance hinder the large-scale application. Thus, research on designing new, inexpensive, and abundant catalyst in hydrogen evolution reaction is our goal.
In this work , we synthesis heterostructure cobalt-doped iron sulfide/iron phosphide with chemical vapor deposition method where synergistic effects between sulfur and phosphorus produce a high-surface-area and exposes a large fraction of edge sites, leads to excellent activity for hydrogen evolution.
The heterostructure cobalt-doped iron sulfide/iron phosphide exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) rather than those based on either the pure sulfide or the pure phosphide in acidic environments. The heterostructure showed an overvoltage requirement only 30 mV. A Tafel slope of ~41.5 mV/decade was calculated. The catalyst exhibits remaining perfectly stable in accelerated durability testing for a week.
第七章 參考文獻
1.NASA. NASA Study Finds World Warmth Edging Ancient Levels.2006; Available from:
http://www.nasa.gov/vision/earth/environment/world_warmth.html
2.J. Nowotny, C.C. Sorrell, L.R. Sheppard, T. Bak, International Journal of Hydrogen Energy , 2005,30,521 – 544.
3.Olah, G. A. Angew. Chem. Int. Ed. Engl. 2013, 52, 104-107.
4.Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Int. J. Hydrogen Energy 2002, 27 , 991-1022.
5.How to ensure H2S safety on offshore rigs ; Available from:http://www.drillingcontractor.org/how-to-ensure-H2S-safety-on-off shore-rigs-8267.
6.Ajay K. Ray and Antonie A. C. M. Beenackers, American Institute of Chemical Engineers,1988,44,2.
7.US Department of Energy, N.R.E.L., Hydrogen the fuel for the future.
8.Biniwale, R. B.; Mizuno, A.; Ichikawa, M. Appl. Catal., A: General 2004,276,169-177.
9.A. Steinfeld, International Journal of Hydrogen Energy , 2002,27,611 – 619.
10.H. Ohya,M. Yatabe,M. Aihara, Y. Negishi, T. Takeuchi, International Journal of Hydrogen Energy ,2002 ,27, 369–376.
11.Abraham Kogan, International Journal of Hydrogen Energy , 2000 ,25 1043-1050.
12.James E. Funk, International Journal of Hydrogen Energy , 2001 ,29,185-190.
13.T. Kodama ,Y. Kondoh ,R. Yamamoto ,H. Andou, N. Satou , Solar Energy ,2005,78,623–631.
14.U. Balachandran, T.H. Lee, S. Wang, S.E. Dorris, International Journal of Hydrogen Energy ,2004,29,291 – 296.
15.A.J.Appleby,Nature,1975,253,257-258.
16.曲新生、呂錫民、陳發林, 產氫與儲氫技術 The hydrogen.
17.Akira Fujishima, Kenichi Honda,Natrue,1972,238,37-38.
18.Nakata, K.; Fujishima, A. J. Photochem. Photobiol., C: Photochemistry Reviews 2012,13,169-189.
19.Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401-425.
20.Electrolysis produces hydrogen
http://cafcp.org/stations/howitworks.
21.Gan, J.; Lu, X.; Tong, Y. Nanoscale 2014 ,6,7142-7164.
22.Ennaoui, A.; Fiechter, S.; Jaegermann, W.’ Tributsch, H. , J.Electrochem. Soc.,1986 , 133 , 97-106.
23.J.P. Wilcoxon, P.P. Newcomer and G.A. Samara, Solid State Communications,1996,98,581-585.
24.A. ENNAOUI and H. TRIBUTSCH, Solar Energy Materials, 1986,14, 461-474.
25.Fahhad Alharbi , John D. Bass , Abdelmajid Salhi , Ahmed Alyamani , Ho-Cheol Kim ,Robert D. Miller , Renewable Energy , 2011, 36 , 2753-2758.
26.Marc Blanchard , Maria Alfredsson , John Brodholt , Kate Wright ,C. Richard A. Catlow , Geochimica et Cosmochimica Acta , 2007, 71 624–630.
27.Pietro P. Altermatt, Tobias Kiesewetter, Klaus Ellmer, Helmut Tributsch , Solar Energy Materials & Solar Cells, 2002 , 71,181–195.
28.Cyruswadua , A . Paulalivisatos , Anddanielm . Kammen , Environ. Sci. Technol. 2009, 43, 2072–2077.
29.Janjua, M. B. I.; Le Roy, R. L. Int. J. Hydrogen Energy 1985, 10, 11-19.
30.LeRoy, R. L. Int. J. Hydrogen Energy 1983,8 ,401-417.
31.Turner, J.; Sverdrup, G.; Mann, M. K.; Maness, P.-C.; Kroposki, B.; Ghirardi, M.; Evans, R. J.; Blake, D. Int. J. Energy Res. 2008, 32, (5), 379-407.
32.Mahrous, A. F. M.; Sakr, I. M.; Balabel, A.; Ibrahim, K. Int. J. Therm. Environ. Eng. 2010, 2 , 113-116.
33.J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry,
second edition, John Wiley, New York, 1993.
34.A. Roy, S. Watson, and D. Infield, International Journal of Hydrogen Energy.2006 , 31, 1964-1979.
35.D.R. Crow, Principles and Applications of Electrochemistry, 1994,4,
174-176.
36.Park, K.-W.; Kwon, B.-K.; Choi, J.-H.; Park, I.-S.; Kim, Y.-M.; Sung, Y.-E. J. Power Sources 2002, 109, 439-445.
37.Bewer, T.; Beckmann, T.; Dohle, H.; Mergel, J.; Stolten, D. J. Power Sources 2004, 125, 1-9.
38.Kunusch, C.; Puleston, P. F.; Mayosky, M. A.; Moré, J. J. Int. J. Hydrogen Energy 2010, 35, 5876-5881.
39.Roy, A.; Watson, S.; Infield, D. Int. J. Hydrogen Energy 2006, 31, 1964-1979.
40.Peled, E. J. Electrochem. Soc. 1979, 126, 2047-2051.
41.Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446-6473.
42.Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Sci. 2007,317,100-2.
43.Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152, 23.
44.Carlos G.; Morales-Guio.; Lucas-Alexandre Stern.; Xile Hu.; Chem. Soc. Rev, 2014, 43, 6555--6569.
45.Merki, D.; Hu, X. Energ. Environ Sci. 2011, 4,3878.
46.Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. J. Am .Chem. Soc. 2013,135,10274-7.
47.Mark A. Lukowski, Andrew S. Daniel, Fei Meng, Audrey Forticaux, Linsen Li, and Song Jin, J. Am. Chem. Soc., 2013, 135, 10274–10277.
48.Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc .2011, 133, 7296-9.
49.D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee and S. O. Kim, Nano Lett., 2014, 14, 1228–1233.
50.Tate, M. P.; Urade, V. N.; Gaik, S. J.; Muzzillo, C. P.; Hillhouse, H. W. Langmuir 2010, 26, 4357-67.
51.Kibsgaard, J., Chen, Zhebo,Reinecke, Benjamin N.,Jaramillo, Thomas F. Nat. Mater. 2012, 11, 963-969.
52.Peng Xiao, Mahasin Alam Sk, Larissa Thia, Xiaoming Ge, Rern Jern Lim, Jing-Yuan Wang, Kok Hwa Lim and Xin Wang. Energy Environ. Sci., 2014, 7, 2624-2629.
53.Eric J. Popczun, James R. McKone, Carlos G. Read, Adam J. Biacchi, Alex M. Wiltrout, Nathan S. Lewis, and Raymond E. Schaak. J. Am. Chem. Soc., 2013, 135, 9267–9270.
54.Fadl H. Saadi, Azhar I. Carim, Erik Verlage, John C. Hemminger, Nathan S. Lewis, and Manuel P. Soriaga. J. Phys. Chem. C, 2014, 118, 29294–29300.
55.Jingqi Tian, Qian Liu, Yanhui Liang, Zhicai Xing, Abdullah M. Asiri, and Xuping Sun. ACS Appl. Mater. Interfaces, 2014, 6, 20579–20584.
56.Yongwen W. Tan, Pan Liu, Luyang Y. Chen, Weitao T. Cong, Yoshikazu Ito, Jiuhui H. Han, Xianwei W. Guo, Zheng Tang, Takeshi Fujita, Akihiko Hirata, Mingwei W. Chen. Advanced Materials,2014, 26, 8023-8028.
57.Yung-Huang, Chang,Cheng-Te, Lin,Tzu-Yin, Chen, Chang-Lung Hsu, Yi-Hsien Lee, Wenjing Zhang, Kung-Hwa Wei, Lain-Jong Li. Advanced Materials,2013, 25, 756-760.
58.Min-Rui Gao, Jin-Xia Liang, Ya-Rong Zheng, Yun-Fei Xu,Jun Jiang, Qiang Gao, Jun Li, Shu-Hong Yu. Nature Communications,2015, 6, 5982-5988.
59.Qiufang Gong, Liang Cheng, Changhai Liu, Mei Zhang, Qingliang Feng, Hualin Ye, Min Zeng, Liming Xie, Zhuang Liu, Yanguang Li. ACS Catalysis. 2015, 5, 2213−2219.
60.Jakob Kibsgaard ,Thomas F. Jaramillo. Angew. Chem. Int. Ed. 2014, 53, 14433 –14437.
61.J.P. Wilcoxon, P.P. Newcomer and G.A. Samara, Solid State Communications , 1996 , 98,581-585.
62.Cyrus Wadia, Yue Wu, Sheraz Gul, Steven K. Volkman, Jinghua Guo, A. Paul Alivisatos, Chem. Mater. 2009, 21, 2568–2570.
63.Bausch, S.; Sailer, B.; Keppner, H.; Willeke, G.; Bucher, E.; Frommeyer, G. Applied Physics Letters. 1990, 57, 25.
64.Jin Joo, Hyon Bin Na, Taekyung Yu, Jung Ho Yu, Young Woon Kim, Fanxin Wu, Jin Z. Zhang, and Taeghwan Hyeon, J. AM. CHEM. SOC. 2003, 125, 11100-11105.
65.W. William Yu and Xiaogang Peng, Angew. Chem. Int. Ed. 2002, 41, 2368-2371.
66.Xiangying Chen, Zhenghua Wang, Xiong Wang, Junxi Wan, Jianwei Liu, and Yitai Qian, Inorg. Chem. 2005, 44, 951-954.
67.Haotian Wang, Charlie Tsai, Desheng Kong, Karen Chan, Frank Abild-Pedersen, Jens K. Nørskov, Yi Cui. Nano Research,2015, 8, 566-575.
68.Desheng Kong, Haotian Wang, Zhiyi Lu, and Yi Cui . J. Am. Chem. Soc., 2014, 13, 4897–4900.
69.Wood Iii, D. L.; Yi, J. S.; Nguyen, T. V. Electrochim. Acta 1998, 43, 3795-3809.
70.Kuo-Chi Lin , D. L., Linan An , Young Hoon Joo. J. Nanosci. Nnoeng. 2013, 1, 15 – 22.
71.Zhanhua Wei , Yongcai Qiu , Haining Chen , Keyou Yan , Zonglong Zhu , Qin Kuang and Shihe Yang. J. Mater. Chem. A, 2014, 2,5508- 5515.
72.Di-Yan Wang, Ming Gong, Hung-Lung Chou, Chun-Jern Pan, Hsin-An Chen, Yingpeng Wu, Meng-Chang Lin, Mingyun Guan, Jiang Yang, Chun-Wei Chen, Yuh-Lin Wang, Bing-Joe Hwang, Chia-Chun Chen, and Hongjie Dai. J. Am. Chem. Soc., 2015, 4, 1587–1592.
73.Ke Sun, Kristian Madsen, Pål Andersen, Weining Bao, Zhelin Sun1 and Deli Wang. Nanotechnology, 2012 , 23, 194013.
74.Tian J1, Liu Q, Cheng N, Asiri AM, Sun X. Angew Chem Int Ed Engl. 2014,36,9577-9581.
75.Haotian Wang, Zhiyi Lu, Desheng Kong, Jie Sun, Thomas M. Hymel , and Yi Cui. ACS Nano, 2014, 5, 4940–4947.
76.Rongwei Liu, Shuang Gu, Hongfang Du and Chang Ming Li. J. Mater. Chem. A, 2014, 2, 17263–17267.
77.Chang YH, Nikam RD, Lin CT, Huang JK, Tseng CC, Hsu CL, Cheng CC, Su CY, Li LJ, Chua DH. ACS Appl Mater Interfaces. 2014 , 20,17679-17685.
78.D.S.P. Cardoso,S. Eugénio, T.M. Silva, D.M.F. Santos, C.A.C. Sequeiraa and M.F. Montemorb. J. Name., 2013, 00, 1-3.
79.Pouria Dasmeh, Davood Ajloo, Debra J Searles., Journal of the Iranian Chemical Society.2011,8,424-432.
80.Ligang Feng, Heron Vrubel, Michaël Bensimon and Xile Hu. Phys. Chem. Chem. Phys., 2014,16, 5917-5921.
81.D. Merki, H. Vrubel, L. Rovelli, S. Fierro and X. Hu, Chem. Sci., 2012, 3, 2515–2525.
82.A. Damian and S. Omanovic, J. Power Sources, 2006, 158, 464–476