簡易檢索 / 詳目顯示

研究生: 陳威廷
Chen, Wei- Ting
論文名稱: 鈷摻雜二硫化鐵/磷化鐵複合材料的合成與其作為析氫觸媒之應用
Novel Synthesis of Cobalt-doped Iron Sulfide/Iron Phosphide as Heterostructure Catalyst for Hydrogen Evolution Reaction
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 117
中文關鍵詞: 產氫電解水二硫化鐵異質結構
英文關鍵詞: Hydrogen evolution reaction (HER), Water electrolysis, FeS2, Heterostructure
論文種類: 學術論文
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球人口快速成長與能量消耗情況下,再生能源的需求逐漸受到關注。在眾多替代能源中,電解水產氫 (water electrolysis) 被視為最具發展潛力之一,因其方法簡單、產生氫氣濃度高且過程中不會產生危害地球的溫室氣體,例如二氧化碳及甲烷等。在析氫反應中,鉑金屬之類的貴金屬研究出具有高效能的催化活性,但其價格昂貴且含量少,受到許多限制。因此開發出新穎、便宜且地表含量豐富的析氫觸媒成為我們重要的研究方向。

    本研究中,我們以化學氣相沉積法合成出鈷摻雜二硫化鐵/磷化鐵複合材料,由硫與磷產生之異質結構並提高整體比表面積,而露出更多活化位置,藉此特性可有效提升其在析氫觸媒上的表現。

    鈷摻雜二硫化鐵/磷化鐵比起一些文獻報導的純硫化物、純磷化物和非貴金屬在酸性環境下中具有更好的析氫活性效率。在極化曲線量測中發現,其異質結構之 Onset potential 約 30 mV ,Tafel slope 值計算約 41.5 mV/dec ;對於電流與時間相對關係下持續的測量一個星期,鈷摻雜二硫化鐵/磷化鐵仍維持其初始電流量,展現其高穩定度。

    In condition of rapid growth global population and energy consumption, the issues have triggered the urgent demand for renewable and clean energy sources.

    Water electrolysis has been considered as one of the most potential for alternative energy in the future. It has many advantages, such as easy in use, high efficiency, high purity in producing hydrogen, , etc., during the process of releasing energy, hydrogen is not produce green-house-effect gas, such as CO2 or CH4.

    In the numerous of noble metals, platinum has been reported as high efficiency in the hydrogen evolution reaction (HER), whereas its high cost and low abundance hinder the large-scale application. Thus, research on designing new, inexpensive, and abundant catalyst in hydrogen evolution reaction is our goal.

    In this work , we synthesis heterostructure cobalt-doped iron sulfide/iron phosphide with chemical vapor deposition method where synergistic effects between sulfur and phosphorus produce a high-surface-area and exposes a large fraction of edge sites, leads to excellent activity for hydrogen evolution.

    The heterostructure cobalt-doped iron sulfide/iron phosphide exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) rather than those based on either the pure sulfide or the pure phosphide in acidic environments. The heterostructure showed an overvoltage requirement only 30 mV. A Tafel slope of ~41.5 mV/decade was calculated. The catalyst exhibits remaining perfectly stable in accelerated durability testing for a week.

    總目錄 I 圖表目錄 V 摘要 XII Abstract XIII 第一章 緒論 1 1-1 前言 1 1-2 氫氣產生方式 6 1-2-1 石化燃料產氫 6 1-2-2 熱化學法製氫 9 1-2-3 生質能產氫 11 1-2-4 光催化產氫 12 1-2-5 電解水產氫 14 1-3陰極結構與特性 15 1-3-1二硫化鐵 ( FeS2 Pyrite) 15 第二章理論基礎 20 2-1 電解水反應 20 2-2 電解水之電壓 22 2-3 法拉第電解定律(Faraday’s Law) 23 2-4 吉布斯自由能(Gibbs Free Energy) 25 2-5 過電位 26 2-5-1 活化過電位 (Activation overpotential) 26 2-5-2 濃度過電位 (Concentrationoverpotential) 28 2-5-3 歐姆過電位 (Ohmicoverpotential) 29 2-6 塔弗方程式 (Tafel equation) 31 第三章 文獻回顧與研究動機 32 3-1常見金屬觸媒與析氫機制 32 3-2金屬硫化物觸媒介紹 34 3-3不同結構的金屬硫化物 36 3-4金屬磷化物觸媒介紹 43 3-5金屬合金與複合材料觸媒介紹 49 3-6研究動機與目的 53 第四章 實驗設備與步驟 54 4-1實驗藥品 54 4-2儀器設備介紹基本原理 55 4-2-1 高溫爐(Oven) 55 4-2-2 恆定電位儀(Potentiostat / Galvanostat) 56 4-2-3 銀/氯化銀參考電極 56 4-3分析儀器介紹及基本原理 58 4-3-1 X-光繞射分析儀 58 4-3-2 穿透式電子顯微鏡 59 4-3-3 掃瞄式電子顯微鏡 60 4-3-4 X-光電子能譜儀 62 4-3-5 比表面積與孔洞分析儀 63 4-4實驗步驟流程圖 64 4-4-1 二硫化鐵與其複合材料合成原理與步驟 65 4-4-2 鐵鈷氧化物合成步驟 67 4-4-3 電極硫化步驟 68 4-4-4 電極磷化步驟 69 4-5電化學測量 70 4-5-1 電極原理介紹與清洗 71 4-5-2 線性掃描伏安法 (Linear Sweep Voltammetry) 73 4-5-3 循環伏安法 (Cyclic Voltammetry) 75 4-5-4 交流阻抗法 (AC Impedance) 75 第五章 結果與討論 76 5-1材料合成與分析 76 5-1-1電極複合材料之鑑定 76 5-1-2電極比表面積分析 82 5-2特性量測分析 85 5-2-1不同成長方法的二硫化鐵之LSV測量 85 5-2-2硫化溫度與時間的FeS2之LSV測量 89 5-2-3不同過渡金屬摻雜於二硫化鐵LSV之量測 91 5-2-4磷化溫度與時間的Co0.5 Fe0.7 S2/FeP LSV量測 93 5-2-5不同基板與pH值的Co0.5 Fe0.7 S2/FeP LSV量測 95 5-2-6不同溫度下電解質的Co0.5 Fe0.7 S2/FeP LSV量測 97 5-3穩定度測試 99 5-3-1不同CV掃描圈數LSV量測 99 5-3-2電流分析法(i-t curve)穩定度與LSV量測 102 5-4交流阻抗分析 103 5-5電雙層電容測試 105 第六章 結論與未來展望 109 第七章 參考文獻 111

    第七章 參考文獻

    1.NASA. NASA Study Finds World Warmth Edging Ancient Levels.2006; Available from:
    http://www.nasa.gov/vision/earth/environment/world_warmth.html

    2.J. Nowotny, C.C. Sorrell, L.R. Sheppard, T. Bak, International Journal of Hydrogen Energy , 2005,30,521 – 544.

    3.Olah, G. A. Angew. Chem. Int. Ed. Engl. 2013, 52, 104-107.

    4.Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Int. J. Hydrogen Energy 2002, 27 , 991-1022.

    5.How to ensure H2S safety on offshore rigs ; Available from:http://www.drillingcontractor.org/how-to-ensure-H2S-safety-on-off shore-rigs-8267.

    6.Ajay K. Ray and Antonie A. C. M. Beenackers, American Institute of Chemical Engineers,1988,44,2.

    7.US Department of Energy, N.R.E.L., Hydrogen the fuel for the future.

    8.Biniwale, R. B.; Mizuno, A.; Ichikawa, M. Appl. Catal., A: General 2004,276,169-177.

    9.A. Steinfeld, International Journal of Hydrogen Energy , 2002,27,611 – 619.

    10.H. Ohya,M. Yatabe,M. Aihara, Y. Negishi, T. Takeuchi, International Journal of Hydrogen Energy ,2002 ,27, 369–376.

    11.Abraham Kogan, International Journal of Hydrogen Energy , 2000 ,25 1043-1050.

    12.James E. Funk, International Journal of Hydrogen Energy , 2001 ,29,185-190.

    13.T. Kodama ,Y. Kondoh ,R. Yamamoto ,H. Andou, N. Satou , Solar Energy ,2005,78,623–631.

    14.U. Balachandran, T.H. Lee, S. Wang, S.E. Dorris, International Journal of Hydrogen Energy ,2004,29,291 – 296.

    15.A.J.Appleby,Nature,1975,253,257-258.

    16.曲新生、呂錫民、陳發林, 產氫與儲氫技術 The hydrogen.

    17.Akira Fujishima, Kenichi Honda,Natrue,1972,238,37-38.

    18.Nakata, K.; Fujishima, A. J. Photochem. Photobiol., C: Photochemistry Reviews 2012,13,169-189.

    19.Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401-425.

    20.Electrolysis produces hydrogen
    http://cafcp.org/stations/howitworks.

    21.Gan, J.; Lu, X.; Tong, Y. Nanoscale 2014 ,6,7142-7164.

    22.Ennaoui, A.; Fiechter, S.; Jaegermann, W.’ Tributsch, H. , J.Electrochem. Soc.,1986 , 133 , 97-106.

    23.J.P. Wilcoxon, P.P. Newcomer and G.A. Samara, Solid State Communications,1996,98,581-585.

    24.A. ENNAOUI and H. TRIBUTSCH, Solar Energy Materials, 1986,14, 461-474.

    25.Fahhad Alharbi , John D. Bass , Abdelmajid Salhi , Ahmed Alyamani , Ho-Cheol Kim ,Robert D. Miller , Renewable Energy , 2011, 36 , 2753-2758.

    26.Marc Blanchard , Maria Alfredsson , John Brodholt , Kate Wright ,C. Richard A. Catlow , Geochimica et Cosmochimica Acta , 2007, 71 624–630.

    27.Pietro P. Altermatt, Tobias Kiesewetter, Klaus Ellmer, Helmut Tributsch , Solar Energy Materials & Solar Cells, 2002 , 71,181–195.

    28.Cyruswadua , A . Paulalivisatos , Anddanielm . Kammen , Environ. Sci. Technol. 2009, 43, 2072–2077.

    29.Janjua, M. B. I.; Le Roy, R. L. Int. J. Hydrogen Energy 1985, 10, 11-19.

    30.LeRoy, R. L. Int. J. Hydrogen Energy 1983,8 ,401-417.

    31.Turner, J.; Sverdrup, G.; Mann, M. K.; Maness, P.-C.; Kroposki, B.; Ghirardi, M.; Evans, R. J.; Blake, D. Int. J. Energy Res. 2008, 32, (5), 379-407.

    32.Mahrous, A. F. M.; Sakr, I. M.; Balabel, A.; Ibrahim, K. Int. J. Therm. Environ. Eng. 2010, 2 , 113-116.

    33.J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry,
    second edition, John Wiley, New York, 1993.

    34.A. Roy, S. Watson, and D. Infield, International Journal of Hydrogen Energy.2006 , 31, 1964-1979.

    35.D.R. Crow, Principles and Applications of Electrochemistry, 1994,4,
    174-176.

    36.Park, K.-W.; Kwon, B.-K.; Choi, J.-H.; Park, I.-S.; Kim, Y.-M.; Sung, Y.-E. J. Power Sources 2002, 109, 439-445.

    37.Bewer, T.; Beckmann, T.; Dohle, H.; Mergel, J.; Stolten, D. J. Power Sources 2004, 125, 1-9.

    38.Kunusch, C.; Puleston, P. F.; Mayosky, M. A.; Moré, J. J. Int. J. Hydrogen Energy 2010, 35, 5876-5881.

    39.Roy, A.; Watson, S.; Infield, D. Int. J. Hydrogen Energy 2006, 31, 1964-1979.

    40.Peled, E. J. Electrochem. Soc. 1979, 126, 2047-2051.

    41.Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446-6473.

    42.Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Sci. 2007,317,100-2.

    43.Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152, 23.

    44.Carlos G.; Morales-Guio.; Lucas-Alexandre Stern.; Xile Hu.; Chem. Soc. Rev, 2014, 43, 6555--6569.

    45.Merki, D.; Hu, X. Energ. Environ Sci. 2011, 4,3878.

    46.Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. J. Am .Chem. Soc. 2013,135,10274-7.

    47.Mark A. Lukowski, Andrew S. Daniel, Fei Meng, Audrey Forticaux, Linsen Li, and Song Jin, J. Am. Chem. Soc., 2013, 135, 10274–10277.

    48.Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc .2011, 133, 7296-9.

    49.D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee and S. O. Kim, Nano Lett., 2014, 14, 1228–1233.

    50.Tate, M. P.; Urade, V. N.; Gaik, S. J.; Muzzillo, C. P.; Hillhouse, H. W. Langmuir 2010, 26, 4357-67.

    51.Kibsgaard, J., Chen, Zhebo,Reinecke, Benjamin N.,Jaramillo, Thomas F. Nat. Mater. 2012, 11, 963-969.

    52.Peng Xiao, Mahasin Alam Sk, Larissa Thia, Xiaoming Ge, Rern Jern Lim, Jing-Yuan Wang, Kok Hwa Lim and Xin Wang. Energy Environ. Sci., 2014, 7, 2624-2629.

    53.Eric J. Popczun, James R. McKone, Carlos G. Read, Adam J. Biacchi, Alex M. Wiltrout, Nathan S. Lewis, and Raymond E. Schaak. J. Am. Chem. Soc., 2013, 135, 9267–9270.

    54.Fadl H. Saadi, Azhar I. Carim, Erik Verlage, John C. Hemminger, Nathan S. Lewis, and Manuel P. Soriaga. J. Phys. Chem. C, 2014, 118, 29294–29300.

    55.Jingqi Tian, Qian Liu, Yanhui Liang, Zhicai Xing, Abdullah M. Asiri, and Xuping Sun. ACS Appl. Mater. Interfaces, 2014, 6, 20579–20584.

    56.Yongwen W. Tan, Pan Liu, Luyang Y. Chen, Weitao T. Cong, Yoshikazu Ito, Jiuhui H. Han, Xianwei W. Guo, Zheng Tang, Takeshi Fujita, Akihiko Hirata, Mingwei W. Chen. Advanced Materials,2014, 26, 8023-8028.

    57.Yung-Huang, Chang,Cheng-Te, Lin,Tzu-Yin, Chen, Chang-Lung Hsu, Yi-Hsien Lee, Wenjing Zhang, Kung-Hwa Wei, Lain-Jong Li. Advanced Materials,2013, 25, 756-760.

    58.Min-Rui Gao, Jin-Xia Liang, Ya-Rong Zheng, Yun-Fei Xu,Jun Jiang, Qiang Gao, Jun Li, Shu-Hong Yu. Nature Communications,2015, 6, 5982-5988.

    59.Qiufang Gong, Liang Cheng, Changhai Liu, Mei Zhang, Qingliang Feng, Hualin Ye, Min Zeng, Liming Xie, Zhuang Liu, Yanguang Li. ACS Catalysis. 2015, 5, 2213−2219.

    60.Jakob Kibsgaard ,Thomas F. Jaramillo. Angew. Chem. Int. Ed. 2014, 53, 14433 –14437.

    61.J.P. Wilcoxon, P.P. Newcomer and G.A. Samara, Solid State Communications , 1996 , 98,581-585.

    62.Cyrus Wadia, Yue Wu, Sheraz Gul, Steven K. Volkman, Jinghua Guo, A. Paul Alivisatos, Chem. Mater. 2009, 21, 2568–2570.

    63.Bausch, S.; Sailer, B.; Keppner, H.; Willeke, G.; Bucher, E.; Frommeyer, G. Applied Physics Letters. 1990, 57, 25.

    64.Jin Joo, Hyon Bin Na, Taekyung Yu, Jung Ho Yu, Young Woon Kim, Fanxin Wu, Jin Z. Zhang, and Taeghwan Hyeon, J. AM. CHEM. SOC. 2003, 125, 11100-11105.

    65.W. William Yu and Xiaogang Peng, Angew. Chem. Int. Ed. 2002, 41, 2368-2371.

    66.Xiangying Chen, Zhenghua Wang, Xiong Wang, Junxi Wan, Jianwei Liu, and Yitai Qian, Inorg. Chem. 2005, 44, 951-954.

    67.Haotian Wang, Charlie Tsai, Desheng Kong, Karen Chan, Frank Abild-Pedersen, Jens K. Nørskov, Yi Cui. Nano Research,2015, 8, 566-575.

    68.Desheng Kong, Haotian Wang, Zhiyi Lu, and Yi Cui . J. Am. Chem. Soc., 2014, 13, 4897–4900.

    69.Wood Iii, D. L.; Yi, J. S.; Nguyen, T. V. Electrochim. Acta 1998, 43, 3795-3809.

    70.Kuo-Chi Lin , D. L., Linan An , Young Hoon Joo. J. Nanosci. Nnoeng. 2013, 1, 15 – 22.

    71.Zhanhua Wei , Yongcai Qiu , Haining Chen , Keyou Yan , Zonglong Zhu , Qin Kuang and Shihe Yang. J. Mater. Chem. A, 2014, 2,5508- 5515.

    72.Di-Yan Wang, Ming Gong, Hung-Lung Chou, Chun-Jern Pan, Hsin-An Chen, Yingpeng Wu, Meng-Chang Lin, Mingyun Guan, Jiang Yang, Chun-Wei Chen, Yuh-Lin Wang, Bing-Joe Hwang, Chia-Chun Chen, and Hongjie Dai. J. Am. Chem. Soc., 2015, 4, 1587–1592.

    73.Ke Sun, Kristian Madsen, Pål Andersen, Weining Bao, Zhelin Sun1 and Deli Wang. Nanotechnology, 2012 , 23, 194013.

    74.Tian J1, Liu Q, Cheng N, Asiri AM, Sun X. Angew Chem Int Ed Engl. 2014,36,9577-9581.

    75.Haotian Wang, Zhiyi Lu, Desheng Kong, Jie Sun, Thomas M. Hymel , and Yi Cui. ACS Nano, 2014, 5, 4940–4947.

    76.Rongwei Liu, Shuang Gu, Hongfang Du and Chang Ming Li. J. Mater. Chem. A, 2014, 2, 17263–17267.

    77.Chang YH, Nikam RD, Lin CT, Huang JK, Tseng CC, Hsu CL, Cheng CC, Su CY, Li LJ, Chua DH. ACS Appl Mater Interfaces. 2014 , 20,17679-17685.

    78.D.S.P. Cardoso,S. Eugénio, T.M. Silva, D.M.F. Santos, C.A.C. Sequeiraa and M.F. Montemorb. J. Name., 2013, 00, 1-3.

    79.Pouria Dasmeh, Davood Ajloo, Debra J Searles., Journal of the Iranian Chemical Society.2011,8,424-432.

    80.Ligang Feng, Heron Vrubel, Michaël Bensimon and Xile Hu. Phys. Chem. Chem. Phys., 2014,16, 5917-5921.

    81.D. Merki, H. Vrubel, L. Rovelli, S. Fierro and X. Hu, Chem. Sci., 2012, 3, 2515–2525.

    82.A. Damian and S. Omanovic, J. Power Sources, 2006, 158, 464–476

    無法下載圖示 本全文未授權公開
    QR CODE