研究生: |
葉伊純 Yi-Cheun Yeh |
---|---|
論文名稱: |
生物分子與金的作用關係: 電化學及合成奈米粒子的探討 Biomolecule and Gold Interaction: Electrochemistry and Nanoparticle Formation |
指導教授: |
張一知
Chang, I-Jy |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 電化學 、金奈米粒子 |
英文關鍵詞: | Electrochemistry, Gold nanoparticle |
論文種類: | 學術論文 |
相關次數: | 點閱:226 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
溴化四辛基銨(Tetraoctylammonium bromide (TOAB))所修飾的金電極被用來探討細胞色素C (cyt c )的電化學反應。Cyt c會經由擴散方式進入TOAB中。且其氧化還原電位從原本的0.025 V (vs. SCE) 變成 -0.1V (vs. SCE), 此結果顯示出TOAB在金電極表面所形成的疏水層對於cyt c具有很強的作用力,可造成cyt c的denature現象。進一步由Spectroelectrochemistry的實驗中發現在TOAB的環境中,還原後的cyt c在UV-Vis光譜中有兩根吸收峰,分別在560 and 610 nm的位置。因此可推斷此時的活化中心應變成接上氧氣的低自旋六配位鐵口卜口林錯合物。
Cyt c可對HAuCl4進行還原作用而產生不同形狀的金奈米粒子。 在穿透式電子顯微鏡(TEM)的觀察下,50 mM的氯離子會使得金奈米粒子顯現出不規則的扭曲狀。溴離子的加入會誘導金奈米形成三角形、五邊形、六角形以及棒狀的結構。溴離子會抑制金奈米的形成。在pH 3時,含有氯離子的cyt c-HAuCl4溶液中亦可形成不同形狀的金奈米粒子,且藉由TEM的解析顯示出polypeptide環繞在金奈米周圍,此係分子的作用力使得金奈米有聚集作用產生。
在以cyt c為還原劑的條件下,金奈米粒子的形狀及大小可藉由還原電位、溫度以及pH值的調控而獲得。
Cytochrome c is an electron transport protein in biological system. The redox potential of this protein was measured by suing tetraoctylammonium bromide modified gold electrode. In the system, cyt c must diffuse through the TOAB layer to reach the Au surface, and the strong hydrophobic tails of TOAB may trigger cyt c denature. The measured redox potential of -0.1 V is similar to oxygen-bound iron proteins. Spectroelectrochemistry of cyt c was performed in an optically transparent thin-layer electrochemical cell at potential of -0.2 V. The final reduced cyt c exhibits split Q bands at 542, and 575 nm. When cyt c diffused inside TOAB layer, the hydrophobic interaction causes protein structure changes, and affects the iron binding sphere. From the spectrum of the reduced form, we conclude it is a low-spin, five-coordinate ferrous heme.
Gold salt, HAuCl4 can be reduced in cyt c solution and gold nanocrystals were formed from this reduction. Transmission electron microscopy (TEM) images showed distorted spherical shapes of gold nanoparticles were formed with excess Cl ions. In the presence of Br- ions, multiple shapes such as triangular, hexagonal nanoplates, decahedral particle and nanorod were formed. Iodide appears to prevent the formation of gold nanocrystals. At pH 3, the Cl- containing cyt c- HAuCl4 solution showed multiple shapes of gold nanocrystals, and TEM images showed gold nanocrystals were formed within the polypeptide.
Using cyt c as a reducing agent the sizes and shapes of gold nanocrystals are dominated by the nucleation and growth rate which can be fine-tuned by varying reduction potential, temperature, and pHs.
1. Li, G.; Chen, L.; Zhu, J.; Zhu, D.; Untereker, D. F. Electroanalysis
1999, 11, 139
2. Tarlov, M. J.; Bowden, E. F. J. Am. Chem. Soc. 1991, 113, 1847.
3. Collinson, M. Bowden, E. F.; Tarlov, M. J. Langmuir 1992, 8, 1247.
4. Mckenzie, K. J.; Marken, F. Langmuir 2003, 19, 4327.
5. Jin, Y.; Shao, Y.; Dong, S. Langmuir 2003, 19, 4771.
6. Wang, Q.; Lu, G.; Yang, B. Langmuir 2004, 20, 1342.
7. Liu, S.; Leech, D.; Ju, H. Anal. Lett. 2003, 36, 1.
8. Wang, l.; Wang, E. Electrochem. Commun. 2004, 6, 49.
9. Zhang, J.; Oyama, M. Microchemical Jounal 2004, 78, 217.
10. Liu, X.; Huang, Y.; Zhang, W.; Fan, G.; Fan, C.; Li, G. Langmuir
2005, 21, 375.
11. Zhang, J.; Oyama, M. J. Electroanal. Chem. 2005, 577, 273.
12. Ye, J.; Baldwin, R. P. Anal. Chem. 1988, 60, 2263.
13. Xiao, Y.; Ju, H. X.; Chen, H. Y. Anal. Biochem. 2000, 278, 22.
14. Liu, A.; Wei, M.; Honma, I.; Zhou, H. Anal. Chem. 2005, 77, 8068.
15. Fedurco, M.; Augustynski, J.; Indiani, C.; Smulevich, G.; Antalik, M.; Bano, M.; Sedlak, E.; Glascock, M. C.; Dawson, J. H. J. Am. Chem. Soc. 2005, 127, 7638.
16. Schwarzinger, S.; Wright, P. E.; Dyson, H. J. Biochemistry 2002, 41, 12681.
17. Choi, J.; Terazima, M. J. Phys. Chem. B 2002, 106, 6587.
18. Edward, P. O.; Dima, R. I.; Brooks, B.; Thirumalai, D. J. Am. Chem. Soc. 2007, 129, 7346.
19. Gupta, R.; Ahmad, F. Biochemistry 1999, 38, 2471.
20. Liu, C.; Chu, D.; Wideman, R. D.; Houliston, R. S.; Wong, H. J.; Meiering, E. M. Biochemistry 2001, 40, 3817.
21. Evans, L. J. A.; Goble, M. L.; Hales, K. A.; Lakey, J. H. Biochemistry 1996, 35, 13180.
22. Narhi, L. O.; Philo, J. S.; Li, T.; Zhang, M.; Samal, B.; Arakawa, T. Biochemistry 1996, 35, 11454.
23. Smith, C. R.; Mateljevic, N.; Bowler, B. E. Biochemistry 2002, 41, 10173.
24. Enoki, S.; Saeki, K.; Maki, K.; Kuwajima K. Biochemistry 2004, 43, 14238.
25. Nelson, C. J.; LaConte, M. J.; Bowler, B. E. J. Am. Chem. Soc. 2001, 123, 7453.
26. Maier, C. S.; Schimerlik, M. I.; Deinzer, Max. L. Biochemistry 1999, 38, 1136.
27. Benítez-Cardoza, C. G.; Rojo-Domínguez, A.; Hernández-Arana, A. Biochemistry 2001, 40, 9049.
28. Roy, S.; Hecht, M. H. Biochemistry 2000, 39, 4603.
29. Wilson, A. J.; Groves, K.; Jain, R. K.; Park, H. S.; Hamilton, A. D. J. Am. Chem. Soc. 2003, 125, 4420.
30. Chah, S.; Kumar, C. V.; Hammond, M. R.; Zare, R. N. Anal. Chem. 2004, 76, 2112.
31. Smith, C. R.; Wandschneider, E.; Bowler, B. E. Biochemistry 2003, 42, 2174.
32. Holzbaur, I. E.; English, A. M.; Ismail, A. A. Biochemistry 1996, 35, 5488.
33. Bowler, B. E.; Dong, A.; Caughey, W. S. Biochemistry; 1994, 33, 2402.
34. Segel, D. J.; Fink, A. L.; Hodgson, K. O.; Doniach, S. Biochemistry 1998, 37, 12443.
35. Betz, S. F.; Pielak, G. J. Biochemistry 1992, 31,12337.
36. Bowler, B. E.; May, K.; Zaragoza, T.; York, P.; Dong, A.; Caugheyg, W. S. Biochemistry 1993, 32, 183.