簡易檢索 / 詳目顯示

研究生: 林家蔚
Chia-wei Lin
論文名稱: 臺灣鈍頭蛇對陸生軟體動物黏液的追蹤行為之探討
Terrestrial molluscs mucus trailing behavior of Taiwan slug snake, Pareas formosensis
指導教授: 杜銘章
Tu, Ming-Chung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 臺灣鈍頭蛇黏液追蹤行為
英文關鍵詞: Pareas formosensis, mucus, trailing behavior
論文種類: 學術論文
相關次數: 點閱:145下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣味追蹤是蛇類覓食時的重要行為,追蹤的效率高低直接影響到蛇類的生存。臺灣鈍頭蛇(Pareas formosensis)專食陸生腹足綱動物,並以有肺類(Pulmonate)為主食,前腮類(Prosobranchia)則不在其食物種類範圍內。本研究主要目的在探討臺灣鈍頭蛇對陸生腹足綱動物黏液之追蹤行為。我以Y型追蹤區檢測臺灣鈍頭蛇對有肺類的雙線蛞蝓(Incilaria bilineata)、斯文豪氏大蝸牛(Nesiohelix swinhoei)以及前腮類的臺灣大山蝸牛(Cyclophorus formosensis)黏液的追蹤行為,單一黏液的追蹤成功率結果顯示,臺灣鈍頭蛇對雙線蛞蝓的追蹤成功率(87.5%)最高,斯文豪氏大蝸牛(62.5%)次之,臺灣大山蝸牛(4.2%)最低並與作為控制組的蒸餾水(0%)無顯著差異。而追蹤偏好的結果顯示,在同時遭遇兩種不同黏液時,臺灣鈍頭蛇的追蹤偏好為雙線蛞蝓>斯文豪氏大蝸牛>臺灣大山蝸牛。將三種黏液放置0、15、30、60分鐘後,臺灣鈍頭蛇的追蹤成功率會隨黏液放置的時間增加而下降。在遭遇一橫向的黏液軌跡時,臺灣鈍頭蛇無法由黏液軌跡判斷獵物的前進方向,而是隨機選擇一方向進行追蹤。將雙線蛞蝓的黏液離心後所得到的小分子與大分子成分,以人工方式塗抹讓臺灣鈍頭蛇進行追蹤測驗,結果顯示臺灣鈍頭蛇對黏液小分子與大分子成分的追蹤成功率無顯著差異。本研究結果顯示臺灣鈍頭蛇對其偏好取食的腹足綱動物之黏液有較高的追蹤成功率及較顯著的追蹤偏好,臺灣鈍頭蛇無法由黏液軌跡判斷獵物的前進方向並進行追蹤,臺灣鈍頭蛇的追蹤成功率會隨黏液放置的時間增加而下降,而腹足綱動物對臺灣鈍頭蛇的抗拒掠食行為,與臺灣鈍頭蛇以黏液的何種成分為追蹤依據則尚待進一步的實驗去釐清。

    Chemosensory search is one of the most important foraging behaviors for snakes. The survival of snakes is directly influenced by the efficiency of chemosensory search. Taiwan slug snake, Pareas formosensis, is a dietary specialist feeding on land snails, especially the Pulmonata. The aim of this study is to investigate the trailing behavior of Taiwan slug snake on the terrestrial mollusks mucus. A Y-shaped observation area was used to exam the trailing behavior of Taiwan slug snake to the mucus of terrestrial slugs (Incilaria bilineata) and two snails (Nesiohelix swinhoei and Cyclophorus formosensis). The results showed that Taiwan slug snakes preferred to trail the mucus of I. bilineata and N. swinhoei; The trailing rate was 87.5% and 62.5%, respectively. Taiwan slug snakes showed no significant preference between the trailing rate of C. formosensis (4.2%) and distilled water (0%). Testing by three kinds of mucus Taiwan slug snakes showed the greatest preference of I. bilineata, then N. swinhoei, and C. formosensis. I exposed each mucus to the air for 0, 15, 30, and 60 minutes, the result showed that the mucus trailing rates declined according to the increase of mucus exposure time. Taiwan slug snakes could not discriminate the direction of prey by mucus trails. Two parts of terrestrial slugs’ mucus were separated by centrifugation, namely small-molecules and macro-molecules. Nevertheless, Taiwan slug snakes showed no significant difference in tracing either small-molecules or macro-molecules.

    中文摘要 2 英文摘要 4 前言 5 實驗材料與方法 14 實驗動物形態概述 14 動物採集與飼養 15 實驗方法 17 分析方法 22 結果 23 討論 28 臺灣鈍頭蛇對單一黏液的追蹤成功率 28 臺灣鈍頭蛇對不同黏液之追蹤偏好 30 黏液可供追蹤的時限 35 獵物的行進方向判斷 37 黏液追蹤有效成分粗分 38 參考文獻 41 表 48 圖 51 附錄 59

    杜銘章. 2005. 蛇類大驚奇. 遠流出版事業股份有限公司. 臺北
    趙爾密. 2006. 中國蛇類. 安徽科學技術出版社. 安徽
    蔡欣吟. 2007. 臺灣鈍頭蛇的食性研究. 國立臺灣師範大學生命科學系碩士論文. 臺北
    謝伯娟, 黃重期, 吳書平. 2003. 臺灣蝸牛圖鑑. 行政院農委會. 臺北
    蘇合成. 2005. 臺灣鈍頭蛇(Pareas formosensis)對食物氣味之偏好及追蹤蛞蝓黏液之探討. 國立臺灣師範大學生命科學系碩士論文. 臺北
    Arnold, S. J. 1981. The microevolution of feeding behavior. In A. C. Kamil, and T. D. Sargent, (eds.), Foraging Behavior: Ecological, Ethological and psychological Approaches, PP. 409-453. New York: Garland STOM Press
    Arnold, S. J. 1992. Behavioral variation in natural populations. VI. Prey responses by two species of garter snakes in three regions of sympatry. Animal Behaviour. 44: 705-719
    Armsworth, C. G., D. A. Bohan, S. J. Powers, D. M. GlenL, and W. O. C. Symondson. 2005. Behavioural responses by slugs to chemicals from a generalist predator. Animal Behaviour. 69: 805-811
    Begun, D., J. L. Kubie, M. P. O’Keefe, and M. Halpern. 1988. Conditioned discrimination of airborne odorants by garter snakes (Thamnophis radix and T. sirtalis sirtalis). Journal of Comparative Psychology. 102: 35-43
    Bonnet, X., D. Bradshaw, R. Shine, and D. Pearson. 1999. Why do snakes have eyes? The (non-)effect of blindness in island tiger snakes (Notechis sutatus). Behavioral Ecology and Sociobiology. 46: 267-272
    Bretz, D. D. and R. V. Dimock. 1983. Behaviourally important characteristics of the mucus trail of the marine gastropod Ilyanassa obsoleta. Journal of Marine Biology and Ecology. 71:181–191
    Brown, W. S. and F. M. Maclean. 1983. Conspecific scent trailing by newborn timber rattlesnake Crotalus horridus. Herpetologica. 1983: 430-436
    Burghardt, G. M. 1967. Chemical-cue preferences of inexperienced snakes: comparative aspects. Science 157: 718-721
    Burghardt, G., M. and C. H. Pruitt. 1975. Role of the tongue and senses in feeding of naive and experienced garter snakes. Physiology & Behavior. 14: 185-194
    Chiszar, D., C. W. Radcliffe, and K. M. Scudder. 1977. Analysis of the behavioral sequence emitted by rattlesnakes during feeding episodes: I. Striking and chemosensory searching. Behavioral Biology. 21: 418-425
    Chiszar, D., C. W. Radcliffe, and K. Scudder. 1980. Use of the vomer- onasal system during predatory episodes by bull snakes (Pituophis melanoleucus). Bulletin of the Psychonomic Society. 15: 35-36
    Chiszar, D., C. W. Radcliffe, R. Overstreet, T. Poole, and T. Byers. 1985. Duration of strike-induced chemosensory searching in cottonmouths (Agkistrodon piscivorus) and a test of the hypothesis that striking prey creates a specific search image. Canadian Journal of Zoology. 63: 1057-1061
    Chiszar, D., C. Radcliffe, R. Boyd, A. Radcliffe, H. Yun, H. M. Smith, T. Boyer, B. Atkins, and F. Feiler. 1986. Trailing behavior in cottonmouths (Agkistrodon piscivorus). Journal of Herpetology. 20: 269-272
    Clark, R. W. 2006. Post-strike behavior of timber rattlesnakes (Crotalus horridus) during natural predation events. Ethology. 112: 1089-1094
    Clark, R. W. 2007. Public information for solitary foragers: timber rattlesnakes use conspecific chemical cues to select ambush sites. Behavioral Ecology. 18: 487-490
    Clifford, K. T., L. Gross, K. Johnson, K. J. Martin, N. Shaheen, and M. A. Harrington. 2003. Slime trail tracking by the predatory snail, Euglandina rosea. Behavioral Neuroscience, 117: 1086–1095
    Cobb, V. A., J. J. Green, T. Worrall, J. Pruett, B. Glorioso. 2005. Initial den location behavior in a litter of neonate Crotalus horridus (Timber Rattlesnakes). Southeastern Naturalist. 4: 723-730
    Cook, A. 1985. Functional aspects of trail following in the carnivorous snail Euglandina rosea. Malacologia. 26: 173-181
    Cook, A. 1989. Factors affecting prey choice and feeding technique in the carnivorous snail Euglandina rosea Ferussac. Journal of Molluscan Studies. 55: 469-477
    Cook, A. 1992. The function of trail following in the pulmonate Limax pseudoflavus. Animal Behaviour. 43: 813-821.
    Cooper, W. E. Jr. 1989. Strike-induced chemosensory searching occurs in lizards. Journal of Chemical Ecology. 15: 1311-1320
    Cooper, W. E. Jr. 1991. Discriminations of integumentary prey chemicals and strike-induced chemosensory searching in the ball python, Python regius. Journal of Ethology. 9: 9-23
    Cooper, W. E. Jr. 1992. Post-bite elevation in tongue-flick rate by neonatal garter snakes (Thamnophis radix). Ethology. 91: 339-345
    Cooper, W. E. Jr., G. M. Burghardt, and W. S. Brown. 2000. Behavioural responses by hatchling racers (Coluber constrictor) from two geographically distinct populations to chemical stimuli from potential prey and predatiors. Amphibia-Reptilia 21: 103-115
    Cundall, D. and H. W. Greene. 2000. Feeding in snakes. In K. Schwenk (ed.), In Feeding: form, function, and evolution in tetrapod vertebrates, PP. 293-333. San Diego, CA: Academic Press
    Cundall, D., and S. J. Beaupre. 2001. Field records of predatory strike kinematics in timber rattlesnakes, Crotalus horridus, Amphibia-Reptilia. 22: 492-498
    Davies, M. S., and J. Blackwell. 2007. Energy saving through trail following in a marine snail. Proceedings of the Royal Society B. 274: 1233-1236
    Drummond, H. and C. M. Garcia. 1995. Congenital responsiveness of garter snakes to a dangerous prey abolished by learning. Animal Behaviour. 49: 891-900
    Ford, N.B. 1978. Evidence for species specificity of pheromone trails in two sympatric garter snakes, Thamnophis. Herpetological Review. 9: 10-11
    Ford, N.B. and C. W. Schofield. 1984. Species specificity of sex pheromone trails in the plains garter snake, Thamnophis radix. Herpetologica. 40:51-55
    Ford, N.B. 1986. The role of pheromone trails in the sociobiology of snakes. In D. Duvall, D. Mu¨ller-Schwarze, and R. M. Silverstein (eds.), Chemical Signals in Vertebrates IV: Ecology, Evolution, and Comparative Biology, PP. 261-278. New York: Plenum Press
    Fountain, D. W. and B. A. Campbell. 1984. A lectin isolate from mucus of H. aspersa. Comparative Biochemistry and Physiology Bulletin B, 77: 419-425
    Furry, K., T. Swain, and D. Chiszar. 1991. Strike-induced chemosensory searching and trail following by prairie rattlesnakes (Crotalus viridis) preying upon deer mice (Peromyscus maniculatus): chemical discrimination among individual mice. Herpetologica. 47: 69-78
    Green, H. W. 1997. Snakes: The evolution of mystery in nature. Berkeley : University of California Press
    Greene, M. J., S. L. Stark, and R. T. Mason. 2001. Pheromone trailing behavior of the brown tree snake, Boiga irregularis. Journal of Chemical Ecology. 27: 2193-2201
    Greenlees, M. J., J. K. Webb, and R. Shine. 2005. Led by the blind: Bandy-Bandy snakes Vermicella annulata (Elapidae) follow blindsnake chemical trails. Copeia. 1: 184-187
    Golan, L., C. Radcliffe, T. Miller, B. O'Connell, and D. Chiszar. 1982. Trailing behavior in prairie rattlesnakes (Crotalus viridis). Journal of Herpetology. 16(3): 287-293
    Gonor, J. J. 1965. Predator–prey between two marine prosobranch gastropods. Veliger. 7: 228-232.
    Griffiths, O., A. Cook. and S. M. Wells. 1993. The diet of the introduced carnivore snail Euglandina rosea in Mauritius and its implications for threatened island gastropod faunas. Journal of Zoology. 229: 79-89.
    Götz, M. 2002. The feeding behavior of the snail-eating snake Pareas carinatus Wagler 1830 (Squamata: Colubridae). Amphibia-Reptilia. 23: 487-493
    Hoso, M. 2006. Identification of molluscan prey from feces of Iwasaki’s slug snake, Pareas iwasakii. Herpetological review. 37(2): 174-176
    Hoso, M. 2007. Oviposition and Hatchling Diet of a Snail-eating Snake Pareas iwasakii (Colubridae: Pareatinae). Current Herpetology. 26: 41-43
    Hoso, M., T. Asami, and M. Hori. 2007. Right-handed snakes: convergent evolution of asymmetry for functional specialization. Biology Letters. 3: 169-173
    Hoso, M., and M. Hori. 2008. Divergent shell shape as an antipredator adaptation in tropical land snails. American Naturalist. 172: 726-732
    Johnson, L. G. 1987. Biology (2nd edn). The science of biology. Dubuque Lowa: Wm. C. Brown . PP. 13
    Kardong, K. V. and T. L. Smith. 2002. Proximate factors involved in rattlesnake predatory behavior: a review. In G. W. Schuett, M. Hoggren, M. E. Douglas, and H. W. Greene, (eds.), In: Biology of the Pitvipers, pp. 253-266. Lake Charles: Eagle Mountain Publishing
    Kley, N. J. 2001. Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes. American Zoologist. 41: 1321-1337
    Laporta-ferreira, I. L., and M. D. G. Salomao. Reptilian predators of terrestrial gastropods. In ‘Natural enemies of terrestrial molluscs’ Ed: G. M. Barker. UK. London. 427-482
    Lawson, R., J. B. Slowinski, B. I. Crother, and F. T. Burbrink. 2005. Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Eevolution. 37: 581-601
    LeMaster, M. P., and R. T. Mason. 2001. Evidence for a female sex pheromone mediating male trailing behavior in the red-sided garter snake, Thamnophis sirtalis parietalis. Chemoecology. 11: 149-152
    Marascuilo, L. A. and M. McSweeney. 1967. Nonparametric post hoc comparisons for trend. Psychological Bulletin. 67: 401-412
    Mori, A. and K. Tanaka. 2001. Preliminary observations on chemical preference, antipredator responses, and prey-handling behavior of juvenile Leioheterodon madagascariensis (Colubridae). Current Herpetology. 20: 39-49
    Mushinsky, H. R., and K. H. Lotz. 1980. Chemoreceptive responses of two sympatric water snakes to extracts of commonly ingested prey species. Journal of Chemical Ecology. 6: 523-535
    Nolen, T. G., P. M. Johnson, C. E. Kicklighter, and T. Capo. 2004. Ink secretion by the marine snail Aplysia californica enhances its ability to escape from a natural predator. Journal of Comparative Physiology. 176: 235-254
    O’Connell, B., R. Greenlee, J. Bacon, H. B. Smith, and D. Chiszar. 1985. Strike-induced chemosensory searching in elapid snakes (cobras, taipans, tiger snakes, and death adders) at San Diego Zoo. The Psychological Record. 35: 431-436
    O’Donnell, R. P., N. B. Ford, R. Shine, and R. T. Mason. 2004. Male red-sided garter snakes, Thamnophis sirtalis parietalis, determine female mating status from pheromone trails. Animal Behaviour. 68: 677-683
    Pakarinen, E. 1994. The importance of mucus as a defence against carabid beetles by the slugs Arion fasciatus and Deroceras reticulatum. The Malacological Sociery of London. 60: 149-155
    Parker, M. R., and K. V. Kardong. 2006. The role of airborne and substrate cues from non-envenomated mice during rattlesnake (Crotalus oreganus) post-strike trailing. Herpetologica. 62(4): 349-356
    Pearce, T. A., and A. Gaertner. 1996. Optimal foraging and mucus trail following in the carnivorous land snail Haplotrema concavum. Malacological Review. 29: 85-99.
    Rahman, J. Y., R. B. Forward, and D. Rittschof. 2000. Responses of mud snails and periwinkles to environmental odors and disaccharide mimics of fish odor. Journal of Chemical Ecology. 26: 679-696
    Rao, D. and D. Yang. 1992. Phylogenic systematics of Pareinae (serpents) of Southeastern Asia and adjacent islands with relationship between it and the geology changes. Acta Zoologica Sinica. 38: 139-149.
    Reel, K. R. and F. A. Fuhrman. 1981. An acetylcholine antagonist from mucus secretions of the dorid nudibranch, Doriopsilla albopunctata. Comparative Biochemistry and Physiology. 68C: 49-53
    Schwenk, K. 1994. Why snakes have forked tongues. Science 263: 1573-1577
    Shaheen, N., K. Patel, P. Patel, M. Moore, and M. A. Harrington. 2005. A predatory snail distinguishes between conspecific and heterospecific snails and trails based on chemical cues in slime. Animal Behaviour 70: 1067-1077
    Shine, R., B. Phillips, H. Waye, M. LeMaster, and R. T. Mason. 2003. Chemosensory cues allow courting male garter snakes to assess body length and body condition of potential mates. Behavioral Ecology and Sociobiology 54: 162-166
    Siegel, S. and J. N. Castellan Jr. 1988. Nonparametric statistics for the behavioral sciences. McGraw Hill, Boston: Massachusetts, PP. 399
    Skingsley, D. R., A. J. White, and A. Weston. 2000. Analysis of pulmonate mucus by infrared spectroscopy. The Malacological Society of London. 66: 363-372
    Simkiss, K. 1988. Molluscan skin. In: The Mollusca: Form and Function K. M. Wilbur, (ed.), PP. 11-35. San Diego: Academic Press
    Smith, T. L., K. V. Kardong, and P. A. Lavin-Murcio. 2000. Persistence of trailing behavior: cues involved in poststrike behavior by the rattlesnake (Crotalus viridis oreganus). Behaviour. 137: 691-703
    Symondson, W. O. C., K. D. Sunderland. and M. H. Greenstone. 2002. Can generalist predators be effective biocontrol agents? Annual Review of Entomology. 47: 561-594
    Vermeij, G. J. 1993. A natural history of shells. New Jersey: Princeton University Press
    Wareing, D. R. 1986. Directional trail following in Deroceras reticulatum. Journal of Molluscan Studies. 52: 256-258.
    Webb, J. K. and R. shine. 1992. To find an ant: trail-following in Australian blindsnakes (Typhlopidae). Animal Behaviour 43: 941-948
    Wells, M. J. 1965. Learning by marine invertebrates. Advances in Marine Biology. 3: 1-62
    Wells, M. J. and S. K. L. Buckley. 1972. Snails and trails. Animal Behaviour. 20: 345-355
    Withgott, J. H. 1996. Post-prandial chemosensory searching in black rat snakes. Animal Behaviour. 53: 775-781

    下載圖示
    QR CODE