簡易檢索 / 詳目顯示

研究生: 蔣沛廷
Chiang, Pei-Ting
論文名稱: 比較電灑游離法與大氣壓化學游離法結合液相層析串聯式質譜儀對農藥檢測之差異
Comparison of electrospray ionization and atmospheric-pressure chemical ionization in pesticide analysis using LC-MS/MS
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 133
中文關鍵詞: 農藥大氣壓游離法液相層析-串聯式質譜儀定量
英文關鍵詞: Pesticides, Atmospheric pressure chemical ionization, LC-MS/MS, Quantification
DOI URL: http://doi.org/10.6345/NTNU202100340
論文種類: 學術論文
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 農藥的使用使人類文明蓬勃發展,其帶來的效益讓作物能夠穩定生長並提供我們足夠的食物。但隨著農藥的用量越來越多,對環境跟人體的會造成不同程度的毒性影響身體健康甚至生命安全。依據2017年我國衛生福利部食品藥物管理署的規範,食品中殘留農藥的檢測方法訂定了373項,利用液相層析串聯質譜儀搭配電灑游離法和氣相層析串聯質譜儀搭配電子游離法進行分析。本實驗利用液相層析串聯式質譜儀的技術針對現行農藥殘留公告方法中農藥進行實驗,移動相使用甲酸銨水溶液搭配甲醇,比較大氣壓化學游離法與電灑游離法對於各農藥之游離效率。原以電灑游離法分析之196項農藥中,有6項農藥在大氣壓化學游離法下有比電灑游離法更佳的靈敏度;原以電子游離法分析之177項農藥中找出43項化合物以大氣壓化學游離法配合液相層析質譜法進行分析,並能夠符合現行法規之定量極限。結果顯示大氣壓化學游離法對擁有Triazine、Imidazole、Triazole、Pyrazole等官能基之農藥游離效率極佳。線性範圍落在1 - 200 ng/mL之間,相關係數皆在r = 0.996以上;準確度介於 86.7% - 138.8%;精密度使用變異係數表示數值介於0.19% - 13.87%。

    The use of pesticides has made human civilization to flourish, and its benefits have allowed crops to grow steadily and provide us with sufficient food. However, the increasing use of pesticides let the environment and the human body expose to different levels of toxicity, which affects health even life safety. According to the regulation of the Taiwan Food and Drug Administration (TFDA) in 2017, there are 373 pesticides detection with the test methodfor pesticide residues in food, which are analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) and gas chromatography tandem mass spectrometry (GC-MS/MS) with electron ionization (EI). In this study, the pesticides were separated using an aqueous solution of ammonium formate with methanol as the mobile phase, and ionization efficiency comparison was made between atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). Among the 196 pesticides originally analyzed by the ESI method, 6 pesticides had better peak areas and better signal-to-noise ratios using APCI; 43 pesticides originally analyzed by the EI method, and good analytical results were also obtained by APCI method.. Among them, the APCI method provided superior efficiency for pesticides which had Triazine, Imidazole, Triazole, Pyrazole functional groups. The linear range was from 1 to 200 ng/mL, and the coefficient of determination were all above r = 0.996. The accuracy ranged from 81.8% to 138.8%, and the precision was between 0.19% and 13.87%.

    第一章 序論 1 第一節 農藥之發展與歷史 1 一、農藥 1 二、農藥之毒性以及分級 3 三、農藥之作用機制 5 第二節 高效能液相層析技術 7 一、高效能液相層析法 7 二、層析管柱 9 三、偵測器 11 第三節 質譜儀技術 12 一、電子游離法 16 二、大氣壓化學游離法 18 三、電灑游離法 21 四、游離源差異比較 23 五、三段四極桿串聯式質譜儀 25 六、電子倍增管 27 第四節 多重反應監測之定量分析 29 第五節 實驗動機與目的 31 第二章 實驗材料與分析方法 32 第一節 實驗試劑 32 第二節 實驗樣品 33 第三節 實驗設備 33 第四節 實驗方法 34 一、分配係數 34 二、極性與極性表面積 35 三、高效能液相層析參數設定 35 四、質譜儀參數設定 36 五、檢量線 38 六、方法驗證 39 第三章 結果與討論 40 第一節 高效能液相層析參數 40 一、層析管柱的選擇 40 二、移動相 42 三、梯度最佳化 43 第二節 最佳化質譜儀參數設定 45 一、電灑游離法參數 45 二、大氣壓化學游離法參數 46 三、離子對的選擇與電壓優化 52 第三節 游離源比較 54 一、LC農藥標準品 54 二、GC農藥標準品 70 第四節 方法驗證 88 一、專一性 88 二、檢量線 89 三、準確度與精密度 94 四、同日間精密度與異日間精密度 99 五、偵測極限與定量極限 103 第五節 回顧與比較其他文獻之檢驗方法 105 第四章 結論與未來展望 107 參考文獻 109 附錄 113

    1. Alavanja, M. C. R., Introduction: pesticides use and exposure extensive worldwide. Rev Environ Health 2009, 24 (4), 303-309.
    2. Barbosa, P. G. A.; Martins, F. I. C. C.; Lima, L. K.; Milhome, M. A. L.; Cavalcante, R. M.; do Nascimento, R. F., Statistical Analysis for Quality Adjustment of the Analytical Curve for Determination of Pesticide Multiresidue in Pineapple Samples. Food Analytical Methods 2018, 11 (2), 466-478.
    3. Anastassiades, M.; Lehotay, S. J.; Stajnbaher, D.; Schenck, F. J., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. Journal of AOAC International 2003, 86 (2), 412-31.
    4. Lehotay, S. J.; de Kok, A.; Hiemstra, M.; Van Bodegraven, P., Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. Journal of AOAC International 2005, 88 (2), 595-614.
    5. Gevao, B.; Semple, K. T.; Jones, K. C., Bound pesticide residues in soils: a review. Environmental Pollution 2000, 108 (1), 3-14.
    6. Shurdut, B. A.; Barraj, L.; Francis, M., Aggregate Exposures under the Food Quality Protection Act: An Approach Using Chlorpyrifos. Regulatory Toxicology and Pharmacology 1998, 28 (2), 165-177.
    7. Kamrin, M. A., Pesticide profiles: toxicity, environmental impact, and fate. CRC press: 1997.
    8. Lu, F. C. J. R. T.; Pharmacology, Acceptable daily intake: inception, evolution, and application. Regulatory Toxicology and Pharmacology 1988, 8 (1), 45-60.
    9. Hornsby, A. G.; Wauchope, R. D.; Herner, A., Pesticide properties in the environment. Springer Science & Business Media: 1995.
    10. MacLachlan, D. J.; Hamilton, D. J. R. T.; Pharmacology, Estimation methods for maximum residue limits for pesticides. 2010, 58 (2), 208-218.
    11. Pundir, C. S.; Chauhan, N. J. A. B., Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. 2012, 429 (1), 19-31.
    12. Casida, J. E. J. C. r. i. t., Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol 2009, 22 (4), 609-619.
    13. Smith, I., Chromatography. Elsevier: 2013.
    14. Barnes, J., High performance liquid chromatography. John Wiley & Sons: 1992.
    15. Dorsey, J. G.; Dill, K. A., The molecular mechanism of retention in reversed-phase liquid chromatography. Chemical Reviews 1989, 89 (2), 331-346.
    16. Thomson, J. J., XL. Cathode rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1897, 44 (269), 293-316.
    17. Dempster, A. J., A new Method of Positive Ray Analysis. Physical Review 1918, 11 (4), 316-325.
    18. Bleakney, W., A New Method of Positive Ray Analysis and Its Application to the Measurement of Ionization Potentials in Mercury Vapor. Physical Review 1929, 34 (1), 157-160.
    19. Munson, M. S.; Field, F.-H., Chemical ionization mass spectrometry. I. General introduction. Journal of the American Chemical Society 1966, 88 (12), 2621-2630.
    20. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
    21. Fenn, J., Electrospray ionization mass spectrometry: how it all began. Journal of biomolecular techniques: JBT 2002, 13 (3), 101.
    22. Houk, R. S.; Fassel, V. A.; Flesch, G. D.; Svec, H. J.; Gray, A. L.; Taylor, C. E., Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Analytical Chemistry 1980, 52 (14), 2283-2289.
    23. Bodor, N.; Gabanyi, Z.; Wong, C. K., A new method for the estimation of partition coefficient. Journal of the American Chemical Society 1989, 111 (11), 3783-3786.
    24. Moriguchi, I.; HIRONO, S.; LIU, Q.; NAKAGOME, I.; MATSUSHITA, Y., Simple method of calculating octanol/water partition coefficient. Chemical and pharmaceutical bulletin 1992, 40 (1), 127-130.
    25. Wang, R.; Gao, Y.; Lai, L., Calculating partition coefficient by atom-additive method. Perspectives in Drug Discovery and Design 2000, 19 (1), 47-66.
    26. Noble, A. J. J. o. C. A., Partition coefficients (n-octanol—water) for pesticides. Journal of Chemical & Engineering Data 1993, 642 (1-2), 3-14.
    27. Ertl, P.; Rohde, B.; Selzer, P. J. J. o. m. c., Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry 2000, 43 (20), 3714-3717.
    28. Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of analytical chemistry. Nelson Education: 2013.
    29. Kuster, M.; López de Alda, M.; Barceló, D., Liquid chromatography–tandem mass spectrometric analysis and regulatory issues of polar pesticides in natural and treated waters. Journal of Chromatography A 2009, 1216 (3), 520-529.
    30. Hogenboom, A.; Hofman, M.; Jolly, D.; Niessen, W.; Brinkman, U. T., On-line dual-precolumn-based trace enrichment for the determination of polar and acidic microcontaminants in river water by liquid chromatography with diode-array UV and tandem mass spectrometric detection. Journal of Chromatography A 2000, 885 (1-2), 377-388.
    31. Bossi, R.; Vejrup, K. V.; Mogensen, B. B.; Asman, W. A., Analysis of polar pesticides in rainwater in Denmark by liquid chromatography–tandem mass spectrometry. Journal of Chromatography a 2002, 957 (1), 27-36.
    32. Asperger, A.; Efer, J.; Koal, T.; Engewald, W., Trace determination of priority pesticides in water by means of high-speed on-line solid-phase extraction–liquid chromatography–tandem mass spectrometry using turbulent-flow chromatography columns for enrichment and a short monolithic column for fast liquid chromatographic separation. Journal of Chromatography A 2002, 960 (1-2), 109-119.
    33. Vanhaecke, L.; Gowik, P.; Bizec, B. L.; Ginkel, L. V.; Bichon, E.; Blokland, M.; Brabander, H. F. D., European analytical criteria: past, present, and future. Journal of AOAC International 2011, 94 (2), 360-372.
    34. Annesley, T. M., Ion suppression in mass spectrometry. Clinical chemistry 2003, 49 (7), 1041-1044.
    35. Gao, W.; Yan, M.; Xiao, Y.; Lv, Y.; Peng, C.; Wan, X.; Hou, R. J. J. o. a.; chemistry, f., Rinsing tea before brewing decreases pesticide residues in tea infusion. J. Agric. Food Chem 2018, 67 (19), 5384-5393.
    36. Song, L.; Han, Y.; Yang, J.; Qin, Y.; Zeng, W.; Xu, S.; Pan, C. J. F. c., Rapid single-step cleanup method for analyzing 47 pesticide residues in pepper, chili peppers and its sauce product by high performance liquid and gas chromatography-tandem mass spectrometry. Food Chem 2019, 279, 237-245.
    37. Thurman, E. M.; Ferrer, I.; Barceló, D., Choosing between Atmospheric Pressure Chemical Ionization and Electrospray Ionization Interfaces for the HPLC/MS Analysis of Pesticides. Analytical Chemistry 2001, 73 (22), 5441-5449.
    38. Titato, G. M.; Bicudo, R. C.; Lanças, Optimization of the ESI and APCI experimental variables for the LC/MS determination of s‐triazines, methylcarbamates, organophosphorous, benzimidazoles, carboxamide and phenylurea compounds in orange samples. Journal of mass spectrometry 2007, 42 (10), 1348-1357.
    39. Chen, L.; Song, F.; Liu, Z.; Zheng, Z.; Xing, J.; Liu, S. J. A.; chemistry, b., Study of the ESI and APCI interfaces for the UPLC–MS/MS analysis of pesticides in traditional Chinese herbal medicine. Anal Bioanal Chem 2014, 406 (5), 1481-1491.
    40. De O. Silva, R.; De Menezes, M. G. G.; De Castro, R. C.; De A. Nobre, C.; Milhome, M. A. L.; Do Nascimento, R. F., Efficiency of ESI and APCI ionization sources in LC-MS/MS systems for analysis of 22 pesticide residues in food matrix. Food Chemistry 2019, 297, 124934.
    41. Thurman, E.; Ferrer, I.; Barcelo, D., Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides. Analytical chemistry 2001, 73 (22), 5441-5449.

    無法下載圖示 電子全文延後公開
    2025/11/27
    QR CODE