簡易檢索 / 詳目顯示

研究生: 段立平
Li Ping Tuan
論文名稱: 免疫沉澱法搭配質譜技術對前列腺癌特異性抗原前體異構物定量分析以改善前列腺癌之偵測
Quantitative analysis of precursor prostate specific antigen isoforms to improve prostate cancer detection by immunoprecipitation and mass spectrometry
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 116
中文關鍵詞: 前列腺特異性抗原前列腺特異性抗原前體截斷前列腺特異性抗原前體免疫沉澱法多反應監測技術質譜前列腺癌
英文關鍵詞: PSA, proPSA, truncated proPSA, immunoprecipitation, multiple reaction monitoring, mass spectrometry, PCa
論文種類: 學術論文
相關次數: 點閱:131下載:66
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前列腺特異性抗原 (PSA) 是目前最成功且廣泛使用的前列腺癌 (PCa) 血清標誌物。但在重要診斷指標PSA濃度4~10 ng/mL的範圍內,它具有有限的能力在區分早期的前列腺癌與良性前列腺增生症 (BPH),缺乏癌症特異性。近年來研究發現前列腺特異性抗原前體 (proPSA) 與前列腺癌更具相關性。ProPSA是血清游離PSA的特殊形式,由天然proPSA及其各種截斷的亞型組成,[-2] proPSA、[-5] proPSA及[-7] proPSA,而其各種截斷的亞型分子已被發現比天然proPSA與癌症有更好的相關性。(不是說不要分段嗎?)多反應監測質譜技術 (MRM-MS) 近年來頻繁地被應用於測量低含量的組織和生物體液中的生物標誌物,由於其高靈敏度和高特異性,實驗設計簡單和高度重複性。本研究建立一套利用免疫沉澱法搭配質譜多反應監測掃描技術之優化方法,檢測定量血清樣品中mature PSA、proPSA及truncated proPSA ([-5] proPSA),藉此改善PSA對前列腺癌偵測之特異性。由於血清和血漿是目前最複雜的生物樣品,針對此,我們特別對免疫沉澱步驟當中所使用之實驗用管柱及緩衝溶液進行優化測試,以達到較高之純化效率,並且使用不同純化策略-免疫親和去除法¬比較純化目標蛋白質之效率。實驗結果證明此研究策略可有效純化血清中proPSA且定量檢測結果呈現良好之線性關係,proPSA及mature PSA的R2 >0.99,[-5] proPSA的R2 >0.99,偵測極限 (LOD) 和定量極限 (LOQ) 皆可達到proPSA濃度ng/mL的範圍內,對應血清中含量最高蛋白質的濃度,濃度低於6個數量級。此外,本研究策略在一次LC-MRM-MS實驗分析中可以檢測多個生物標誌物,包括成熟和前體形式的PSA。本研究開發此方法提供一個具吸引力的替代方案,藉由檢測定量血清樣品中proPSA及truncated proPSA以改善PSA對前列腺癌偵測之特異性。

    Prostate specific antigen (PSA) is a widely used serum marker for prostate cancer (PCa). In the critical diagnostic range of 4~10 ng/mL it has limited specificity for distinguishing early PCa from benign prostatic hyperplasia (BPH). More recently, promising data is emerging regarding one precursor form of free PSA, proPSA is associated with PCa. ProPSA is comprised of native proPSA as well as truncated proPSA forms, [-2] proPSA, [-5] proPSA, and [-7] proPSA, which have been shown to be more cancer-associated than native proPSA. Lately, multiple reaction monitoring mass spectrometry (MRM-MS) has been more frequently applied to measure low abundance biomarkers in tissues and biofluids, owing to its high sensitivity and specificity, simplicity of assay configuration, and exceptional multiplexing. In this study, we developed and optimized a method for an immunoprecipitation-based platform and MRM-MS assay capable of sensitive and accurate quantification of proPSA in serum. Since serum and plasma are by far the most complex biological fluids, we also optimized the vials and buffers used in the immunoprecipitation workflow to achieve such a level of sensitivity and compared the efficiency of protein purification with immunoaffinity depletion. The strategy we demonstrated the target proteins can be purified effectively; both limit of detection (LOD) and limit of quantitation (LOQ) of proPSA are able to reach nanogram/milliliter range, corresponding to a concentration that is 6-order lower than the concentration of the most abundant proteins in serum with good linearilty. Furthermore, the simultaneous measurement of multiple biomarkers, including the mature and precursor forms of PSA, can be performed in a single multiplexed analysis using LC-MRM-MS. We demonstrate that the strategy here provide an attractive alternative for reliably measuring proPSA to improve the detection of PCa.

    目錄......................................................II 圖目錄.....................................................V 表目錄...................................................VIII 縮寫......................................................IX 中文摘要...................................................XI Abstract.................................................XII 第一章 序論...............................................1 1.1 前言..................................................1 1.2 前列腺癌概述............................................2 1.3 前列腺癌的診斷..........................................3 1.4 前列腺特異性抗原........................................5 1.4.1 游離PSA與總PSA的比值..................................7 1.4.2 前列腺特異性抗原前體...................................7 1.5 質譜技術...............................................8 1.6 質譜多反應監測技術之原理與特點 (multiple reaction monitoring)...............................................14 1.7 基於MRM質譜技術的研究技術...............................16 1.7.1 預置MRM數據採集模式 (schedule MRM, sMRM).............16 1.7.2 穩定同位素稀釋法 (stable isotope dilution, SID)......17 1.8 MRM技術在蛋白質體學研究領域的應用........................18 1.8.1 MRM技術在後轉譯修飾研究中的應用........................18 1.8.2 MRM技術在疾病生物標誌物驗證中的應用.....................18 1.8.3 MRM技術在定量蛋白質體學研究中的應用.....................20 1.9 蛋白質純化策略.........................................21 1.10 實驗動機.............................................23 第二章 實驗材料............................................25 2.1 樣品.................................................25 2.2 藥品.................................................25 2.3 試劑.................................................27 2.4 耗材.................................................27 2.5 儀器設備..............................................27 第三章 實驗方法............................................29 3.1 微透析................................................29 3.2 使用免疫沉澱策略純化血清樣品.............................29 3.3 使用免疫親和去除策略純化血清樣品..........................32 3.4 胜肽樣品使用Oasis® HLB 96-well µ–elution plate去鹽濃縮.33 3.5 蛋白質樣品使用Amicon® Ultra去鹽濃縮.....................34 3.6 蛋白質濃度測定.........................................34 3.7 蛋白質水解............................................35 3.8 一維膠體電泳...........................................36 3.8.1 膠體銀染............................................37 3.9 奈米級液相層析電噴灑游離串聯式質譜........................38 3.9.1 奈米級液相層析.......................................38 3.9.2 電噴灑游離串聯式質譜..................................40 3.9.3 資料分析............................................41 第四章 結果與討論...........................................43 4.1 免疫沉澱純化蛋白質策略實驗條件優化........................43 4.1.1 實驗使用之vial......................................44 4.1.2 實驗使用之washing buffer............................45 4.1.3 實驗使用之elute buffer..............................45 4.2 PSA胜肽選擇與MRM條件優化................................46 4.3 使用免疫沉澱法搭配LC-MRM-MS偵測血清樣品中proPSA...........47 4.4 使用免疫親和去除策略搭配LC-MRM-MS偵測血清樣品中proPSA......50 第五章 結論與未來展望.......................................52 附圖......................................................54 附表......................................................98 參考文獻..................................................107

    (1) McNeal, J. E.: Origin and development of carcinoma in the prostate. Cancer 1969, 23, 24-34.
    (2) McNeal, J. E.: The zonal anatomy of the prostate. The Prostate 1981, 2, 35-49.
    (3) Shannon, B. A.; McNeal, J. E.; Cohen, R. J.: Transition zone carcinoma of the prostate gland: a common indolent tumour type that occasionally manifests aggressive behaviour. Pathology 2003, 35, 467-71.
    (4) Mikolajczyk, S. D.; Song, Y.; Wong, J. R.; Matson, R. S.; Rittenhouse, H. G.: Are multiple markers the future of prostate cancer diagnostics? Clinical biochemistry 2004, 37, 519-28.
    (5) Wang, M. C.; Valenzuela, L. A.; Murphy, G. P.; Chu, T. M.: Purification of a human prostate specific antigen. Investigative urology 1979, 17, 159-63.
    (6) Lilja, H.; Christensson, A.; Dahlen, U.; Matikainen, M. T.; Nilsson, O.; Pettersson, K.; Lovgren, T.: Prostate-specific antigen in serum occurs predominantly in complex with alpha 1-antichymotrypsin. Clinical chemistry 1991, 37, 1618-25.
    (7) Stenman, U. H.; Leinonen, J.; Alfthan, H.; Rannikko, S.; Tuhkanen, K.; Alfthan, O.: A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer research 1991, 51, 222-6.
    (8) Zhang, W. M.; Leinonen, J.; Kalkkinen, N.; Dowell, B.; Stenman, U. H.: Purification and characterization of different molecular forms of prostate-specific antigen in human seminal fluid. Clinical chemistry 1995, 41, 1567-73.
    (9) Zhang, W. M.; Finne, P.; Leinonen, J.; Vesalainen, S.; Nordling, S.; Rannikko, S.; Stenman, U. H.: Characterization and immunological determination of the complex between prostate-specific antigen and alpha(2)-macroglobulin. Clinical chemistry 1998, 44, 2471-2479.
    (10) Mikolajczyk, S. D.; Millar, L. S.; Wang, T. J.; Rittenhouse, H. G.; Wolfert, R. L.; Marks, L. S.; Song, W. T.; Wheeler, T. M.; Slawin, K. M.: "BPSA," a specific molecular form of free prostate-specific antigen, is found predominantly in the transition zone of patients with nodular benign prostatic hyperplasia. Urology 2000, 55, 41-45.
    (11) Thompson, I. M.; Goodman, P. J.; Tangen, C. M.; Lucia, M. S.; Miller, G. J.; Ford, L. G.; Lieber, M. M.; Cespedes, R. D.; Atkins, J. N.; Lippman, S. M.; Carlin, S. M.; Ryan, A.; Szczepanek, C. M.; Crowley, J. J.; Coltman, C. A., Jr.: The influence of finasteride on the development of prostate cancer. The New England journal of medicine 2003, 349, 215-24.
    (12) Bunting, P. S.: Screening for prostate cancer with prostate-specific antigen: beware the biases. Clinica chimica acta; international journal of clinical chemistry 2002, 315, 71-97.
    (13) Djavan, B.; Zlotta, A.; Kratzik, C.; Remzi, M.; Seitz, C.; Schulman, C. C.; Marberger, M.: PSA, PSA density, PSA density of transition zone, free/total PSA ratio, and PSA velocity for early detection of prostate cancer in men with serum PSA 2.5 to 4.0 ng/mL. Urology 1999, 54, 517-22.
    (14) Tchetgen, M. B.; Oesterling, J. E.: The effect of prostatitis, urinary retention, ejaculation, and ambulation on the serum prostate-specific antigen concentration. The Urologic clinics of North America 1997, 24, 283-291.
    (15) Catalona, W. J.; Partin, A. W.; Slawin, K. M.; Brawer, M. K.; Flanigan, R. C.; Patel, A.; Richie, J. P.; deKernion, J. B.; Walsh, P. C.; Scardino, P. T.; Lange, P. H.; Subong, E. N. P.; Parson, R. E.; Gasior, G. H.; Loveland, K. G.; Southwick, P. C.: Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease - A prospective multicenter clinical trial. Jama-J Am Med Assoc 1998, 279, 1542-1547.
    (16) Woodrum, D. L.; Brawer, M. K.; Partin, A. W.; Catalona, W. J.; Southwick, P. C.: Interpretation of free prostate specific antigen clinical research studies for the detection of prostate cancer. The Journal of urology 1998, 159, 5-12.
    (17) Mikolajczyk, S. D.; Rittenhouse, H. G.: Pro PSA: a more cancer specific form of prostate specific antigen for the early detection of prostate cancer. The Keio journal of medicine 2003, 52, 86-91.
    (18) Christensson, A.; Bjork, T.; Nilsson, O.; Dahlen, U.; Matikainen, M. T.; Cockett, A. T. K.; Abrahamsson, P. A.; Lilja, H.: Serum Prostate-Specific Antigen Complexed to Alpha-1-Antichymotrypsin as an Indicator of Prostate-Cancer. J Urology 1993, 150, 100-105.
    (19) Filella, X.; Truan, D.; Alcover, J.; Quinto, L.; Molina, R.; Luque, P.; Coca, F.; Ballesta, A. M.: Comparison of several combinations of free, complexed, and total PSA in the diagnosis of prostate cancer in patients with urologic symptoms. Urology 2004, 63, 1100-3; discussion 1103-4.
    (20) Catalona, W. J.; Bartsch, G.; Rittenhouse, H. G.; Evans, C. L.; Linton, H. J.; Amirkhan, A.; Horninger, W.; Klocker, H.; Mikolajczyk, S. D.: Serum pro prostate specific antigen improves cancer detection compared to free and complexed prostate specific antigen in men with prostate specific antigen 2 to 4 ng/ml. The Journal of urology 2003, 170, 2181-5.
    (21) Khan, M. A.; Partin, A. W.; Rittenhouse, H. G.; Mikolajczyk, S. D.; Sokoll, L. J.; Chan, D. W.; Veltri, R. W.: Evaluation of proprostate specific antigen for early detection of prostate cancer in men with a total prostate specific antigen range of 4.0 to 10.0 ng/ml. The Journal of urology 2003, 170, 723-6.
    (22) Sokoll, L. J.; Chan, D. W.; Mikolajczyk, S. D.; Rittenhouse, H. G.; Evans, C. L.; Linton, H. J.; Mangold, L. A.; Mohr, P.; Bartsch, G.; Klocker, H.; Horninger, W.; Partin, A. W.: Proenzyme psa for the early detection of prostate cancer in the 2.5-4.0 ng/ml total psa range: preliminary analysis. Urology 2003, 61, 274-6.
    (23) Balk, S. P.; Ko, Y. J.; Bubley, G. J.: Biology of prostate-specific antigen. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2003, 21, 383-91.
    (24) Mikolajczyk, S. D.; Marks, L. S.; Partin, A. W.; Rittenhouse, H. G.: Free prostate-specific antigen in serum is becoming more complex. Urology 2002, 59, 797-802.
    (25) Mikolajczyk, S. D.; Grauer, L. S.; Millar, L. S.; Hill, T. M.; Kumar, A.; Rittenhouse, H. G.; Wolfert, R. L.; Saedi, M. S.: A precursor form of PSA (pPSA) is a component of the free PSA in prostate cancer serum. Urology 1997, 50, 710-4.
    (26) Mikolajczyk, S. D.; Millar, L. S.; Wang, T. J.; Rittenhouse, H. G.; Marks, L. S.; Song, W.; Wheeler, T. M.; Slawin, K. M.: A precursor form of prostate-specific antigen is more highly elevated in prostate cancer compared with benign transition zone prostate tissue. Cancer research 2000, 60, 756-9.
    (27) Peter, J.; Unverzagt, C.; Krogh, T. N.; Vorm, O.; Hoesel, W.: Identification of precursor forms of free prostate-specific antigen in serum of prostate cancer patients by immunosorption and mass spectrometry. Cancer research 2001, 61, 957-62.
    (28) Mikolajczyk, S. D.; Marker, K. M.; Millar, L. S.; Kumar, A.; Saedi, M. S.; Payne, J. K.; Evans, C. L.; Gasior, C. L.; Linton, H. J.; Carpenter, P.; Rittenhouse, H. G.: A truncated precursor form of prostate-specific antigen is a more specific serum marker of prostate cancer. Cancer research 2001, 61, 6958-63.
    (29) Linton, H. J.; Marks, L. S.; Millar, L. S.; Knott, C. L.; Rittenhouse, H. G.; Mikolajczyk, S. D.: Benign prostate-specific antigen (BPSA) in serum is increased in benign prostate disease. Clinical chemistry 2003, 49, 253-9.
    (30) Yost, R. A.; Enke, C. G.: Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Analytical chemistry 1979, 51, 1251-64.
    (31) Hoke, S. H.; Morand, K. L.; Greis, K. D.; Baker, T. R.; Harbol, K. L.; Dobson, R. L. M.: Transformations in pharmaceutical research and development, driven by innovations in multidimensional mass spectrometry-based technologies. Int J Mass Spectrom 2001, 212, 135-196.
    (32) Wiesner, J. L.; Sutherland, F. C.; van Essen, G. H.; Hundt, H. K.; Swart, K. J.; Hundt, A. F.: Selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method for the determination of alfuzosin in human plasma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2003, 788, 361-8.
    (33) Roschinger, W.; Olgemoller, B.; Fingerhut, R.; Liebl, B.; Roscher, A. A.: Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases. European journal of pediatrics 2003, 162 Suppl 1, S67-76.
    (34) Baty, J. D.; Robinson, P. R.: Single and multiple ion recording techniques for the analysis of diphenylhydantoin and its major metabolite in plasma. Biomedical mass spectrometry 1977, 4, 36-41.
    (35) Lee, M. S.; Kerns, E. H.: LC/MS applications in drug development. Mass spectrometry reviews 1999, 18, 187-279.
    (36) Anderson, L.; Hunter, C. L.: Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006, 5, 573-88.
    (37) Domon, B.; Aebersold, R.: Mass spectrometry and protein analysis. Science 2006, 312, 212-7.
    (38) Stahl-Zeng, J.; Lange, V.; Ossola, R.; Eckhardt, K.; Krek, W.; Aebersold, R.; Domon, B.: High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 2007, 6, 1809-17.
    (39) Mirzaei, H.; Regnier, F.: Enhancing electrospray ionization efficiency of peptides by derivatization. Analytical chemistry 2006, 78, 4175-83.
    (40) Gallien, S.; Duriez, E.; Domon, B.: Selected reaction monitoring applied to proteomics. Journal of mass spectrometry : JMS 2011, 46, 298-312.
    (41) Kiyonami, R.; Schoen, A.; Prakash, A.; Peterman, S.; Zabrouskov, V.; Picotti, P.; Aebersold, R.; Huhmer, A.; Domon, B.: Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol Cell Proteomics 2011, 10, M110 002931.
    (42) Tang, H. Y.; Beer, L. A.; Barnhart, K. T.; Speicher, D. W.: Rapid verification of candidate serological biomarkers using gel-based, label-free multiple reaction monitoring. Journal of proteome research 2011, 10, 4005-17.
    (43) Gerber, S. A.; Rush, J.; Stemman, O.; Kirschner, M. W.; Gygi, S. P.: Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 6940-5.
    (44) Barnidge, D. R.; Goodmanson, M. K.; Klee, G. G.; Muddiman, D. C.: Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-Ms/MS using protein cleavage and isotope dilution mass spectrometry. Journal of proteome research 2004, 3, 644-52.
    (45) Van Langenhove, A.; Costello, C. E.; Biller, J. E.; Biemann, K.; Browne, T. R.: A gas chromatographic/mass spectrometric method for the simultaneous quantitation of 5,5-diphenylhydantoin (phenytoin), its para-hydroxylated metabolite and their stable isotope labelled analogs. Clinica chimica acta; international journal of clinical chemistry 1981, 115, 263-75.
    (46) Gaskell, S. J.; Rollins, K.; Smith, R. W.; Parker, C. E.: Determination of serum cortisol by thermospray liquid chromatography/mass spectrometry: comparison with gas chromatography/mass spectrometry. Biomedical & environmental mass spectrometry 1987, 14, 717-22.
    (47) Barnidge, D. R.; Dratz, E. A.; Martin, T.; Bonilla, L. E.; Moran, L. B.; Lindall, A.: Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Analytical chemistry 2003, 75, 445-51.
    (48) Desiderio, D. M.; Kai, M.: Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomedical mass spectrometry 1983, 10, 471-9.
    (49) Barr, J. R.; Maggio, V. L.; Patterson, D. G., Jr.; Cooper, G. R.; Henderson, L. O.; Turner, W. E.; Smith, S. J.; Hannon, W. H.; Needham, L. L.; Sampson, E. J.: Isotope dilution--mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clinical chemistry 1996, 42, 1676-82.
    (50) Keshishian, H.; Addona, T.; Burgess, M.; Kuhn, E.; Carr, S. A.: Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 2007, 6, 2212-29.
    (51) Hoofnagle, A. N.; Becker, J. O.; Wener, M. H.; Heinecke, J. W.: Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clinical chemistry 2008, 54, 1796-804.
    (52) Keshishian, H.; Addona, T.; Burgess, M.; Mani, D. R.; Shi, X.; Kuhn, E.; Sabatine, M. S.; Gerszten, R. E.; Carr, S. A.: Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 2009, 8, 2339-49.
    (53) Eissler, C. L.; Bremmer, S. C.; Martinez, J. S.; Parker, L. L.; Charbonneau, H.; Hall, M. C.: A general strategy for studying multisite protein phosphorylation using label-free selected reaction monitoring mass spectrometry. Analytical biochemistry 2011, 418, 267-75.
    (54) Li, Y.; Tian, Y.; Rezai, T.; Prakash, A.; Lopez, M. F.; Chan, D. W.; Zhang, H.: Simultaneous analysis of glycosylated and sialylated prostate-specific antigen revealing differential distribution of glycosylated prostate-specific antigen isoforms in prostate cancer tissues. Analytical chemistry 2011, 83, 240-5.
    (55) Duncan, M. W.; Hunsucker, S. W.: Proteomics as a tool for clinically relevant biomarker discovery and validation. Exp Biol Med (Maywood) 2005, 230, 808-17.
    (56) DeSouza, L. V.; Taylor, A. M.; Li, W.; Minkoff, M. S.; Romaschin, A. D.; Colgan, T. J.; Siu, K. W.: Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. Journal of proteome research 2008, 7, 3525-34.
    (57) Engvall, E.; Perlmann, P.: Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 1971, 8, 871-4.
    (58) Anderson, N. L.; Anderson, N. G.: The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002, 1, 845-67.
    (59) Preissner, C. M.; O'Kane, D. J.; Singh, R. J.; Morris, J. C.; Grebe, S. K. G.: Phantoms in the assay tube: Heterophile antibody interferences in serum thyroglobulin assays. J Clin Endocr Metab 2003, 88, 3069-3074.
    (60) Anderson, N. L.; Anderson, N. G.; Pearson, T. W.; Borchers, C. H.; Paulovich, A. G.; Patterson, S. D.; Gillette, M.; Aebersold, R.; Carr, S. A.: A human proteome detection and quantitation project. Mol Cell Proteomics 2009, 8, 883-6.
    (61) Whiteaker, J. R.; Zhang, H.; Zhao, L.; Wang, P.; Kelly-Spratt, K. S.; Ivey, R. G.; Piening, B. D.; Feng, L. C.; Kasarda, E.; Gurley, K. E.; Eng, J. K.; Chodosh, L. A.; Kemp, C. J.; McIntosh, M. W.; Paulovich, A. G.: Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. Journal of proteome research 2007, 6, 3962-75.
    (62) Kuhn, E.; Wu, J.; Karl, J.; Liao, H.; Zolg, W.; Guild, B.: Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 2004, 4, 1175-86.
    (63) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.
    (64) Karas, M.; Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical chemistry 1988, 60, 2299-301.
    (65) Cleveland, D. W.; Fischer, S. G.; Kirschner, M. W.; Laemmli, U. K.: Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. The Journal of biological chemistry 1977, 252, 1102-6.
    (66) Clegg, G. A.; Dole, M.: Molecular Beams of Macroions .3. Zein and Polyvinypyrrolidone. Biopolymers 1971, 10, 821-&.
    (67) S. F. Wong, C. K. M., J. B. Fenn: Multiple charging in electrospray ionization of poly(ethylene glycols). J. Phys. Chem. 1988, 92, 546–550.
    (68) K., G. B. a. B.: Strategy for the mass spectrometric verification and correction of the primary structures of proteins deduced from their DNA sequences. Proc. Natl. Acad. Sci 1984, 81, 1956-1960.
    (69) Yates, J. R., 3rd; Eng, J. K.; McCormack, A. L.; Schieltz, D.: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Analytical chemistry 1995, 67, 1426-36.
    (70) Mortz, E.; O'Connor, P. B.; Roepstorff, P.; Kelleher, N. L.; Wood, T. D.; McLafferty, F. W.; Mann, M.: Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, 8264-7.
    (71) Naya, Y.; Fritsche, H. A.; Bhadkamkar, V. A.; Mikolajczyk, S. D.; Rittenhouse, H. G.; Babaian, R. J.: Evaluation of precursor prostate-specific antigen isoform ratios in the detection of prostate cancer. Urologic oncology 2005, 23, 16-21.
    (72) Kulasingam, V.; Smith, C. R.; Batruch, I.; Buckler, A.; Jeffery, D. A.; Diamandis, E. P.: "Product ion monitoring" assay for prostate-specific antigen in serum using a linear ion-trap. Journal of proteome research 2008, 7, 640-7.
    (73) Fortin, T.; Salvador, A.; Charrier, J. P.; Lenz, C.; Lacoux, X.; Morla, A.; Choquet-Kastylevsky, G.; Lemoine, J.: Clinical Quantitation of Prostate-specific Antigen Biomarker in the Low Nanogram/Milliliter Range by Conventional Bore Liquid Chromatography-Tandem Mass Spectrometry (Multiple Reaction Monitoring) Coupling and Correlation with ELISA Tests. Mol Cell Proteomics 2009, 8, 1006-1015.
    (74) Liu, T.; Hossain, M.; Schepmoes, A. A.; Fillmore, T. L.; Sokoll, L. J.; Kronewitter, S. R.; Izmirlian, G.; Shi, T.; Qian, W. J.; Leach, R. J.; Thompson, I. M.; Chan, D. W.; Smith, R. D.; Kagan, J.; Srivastava, S.; Rodland, K. D.; Camp, D. G., 2nd: Analysis of serum total and free PSA using immunoaffinity depletion coupled to SRM: correlation with clinical immunoassay tests. Journal of proteomics 2012, 75, 4747-57.

    下載圖示
    QR CODE