研究生: |
王彥婷 Wang, Yan-Ting |
---|---|
論文名稱: |
鐵酸鉍鐵電極性疇壁對釔鋇銅氧超導表現的影響 Superconducting Behaviors of YBa2Cu3O7-δ Influenced by Ferroelectric Domain Walls of BiFeO3 |
指導教授: |
邱雅萍
Chiu, Ya-Ping |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 剖面式掃描穿隧顯微鏡 、釔鋇銅氧 、鐵酸鉍 、鐵電性 、超導體 |
英文關鍵詞: | cross-sectional scanning tunneling microscope, YBa2Cu3O7-δ, BiFeO3, ferroelectricity, superconductivity |
DOI URL: | https://doi.org/10.6345/NTNU202203617 |
論文種類: | 學術論文 |
相關次數: | 點閱:273 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自高溫超導體釔鋇銅氧(YBa2Cu3O7-δ,YBCO)被發現以來,調控其超導特性的相關研究逐漸受人注目。已有相關研究發現不同極性方向的鐵電性材料鐵酸鉍(BiFeO3, BFO)與釔鋇銅氧接合,會量測到不一樣的超導臨界溫度Tc,證實鐵電極性與超導的交互作用會造成對釔鋇銅氧超導特性的抑制或助長。為了觀察釔鋇銅氧在鄰近鐵酸鉍的疇域(Domains, DMs)與疇壁(Domain Walls, DWs)的超導行為,本研究工作在鐵酸鉍之上成長釔鋇銅氧,並藉由剖面式掃描穿隧顯微鏡(Cross-sectional Scanning Tunneling Microscope, XSTM)從剖面處直接量測樣品釔鋇銅氧/鐵酸鉍(其中鐵酸鉍分別有109°和71°疇壁兩種結構)的介面處之電子結構。研究結果可獲知在介面處釔鋇銅氧的超導態如何受鐵酸鉍不同極性方向所影響,實驗結果顯示鐵酸鉍極性方向指向釔鋇銅氧比極性方向指離釔鋇銅氧的超導能隙2Δ值小,鐵酸鉍疇域的極性方向可調控釔鋇銅氧超導能隙。
Since the high-temperature superconductor YBa2Cu3O7-δ(YBCO) was found, the modulation of its superconductivity became a popular topic among the field of materials science. Recent researches have revealed that different direction of the ferroelectric polarization in the multiferroics BiFeO3 (BFO) grown upon the superconductor YBCO leads to the variant critical temperature Tc of YBCO, and deducedthat interaction between ferroelectricity and superconductivity has abilities to suppress or raise superconducting properties of YBCO. To observe the superconducting states of YBCO near the domains (DMs) and the domain walls (DWs) of BFO, YBCO was grown on BFO. The electronic structures of the specimens YBa2Cu3O7-δ/ BiFeO3 (109°DWs) and YBa2Cu3O7-δ/ BiFeO3 (71°DWs) at the interface were measured by cross-sectional scanning tunneling microscopy (XSTM) directly in this study. Through the experimental result, how the superconducting state ofYBCO at the interface is influenced by the direction of ferroelectric polarization in BFO is revealed. The value of the superconducting energy gap 2Δis smaller when the direction of polarization points to YBCO than pointing away YBCO. In summary, the superconducting energy band gap of YBCO can be changed by the direction of ferroelectric polarization in BFO.
參考文獻
[1] J. Chakhalian et al., Nat. Phys. 2, 244 (2006).
[2] T. Y. Chien, J. Liu, J. Chakhalian, N. P. Guisinger, and J. W. Freeland, Phys. Rev. B 82, 041101 (2010).
[3] V. Lemanov, A. Kholkin, and A. Sherman, Superconductor Science and Technology 6, 814 (1993).
[4] B. Meyer and D. Vanderbilt, Phys. Rev. B 65, 104111 (2002).
[5] G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 119 (2012).
[6] T. Choi, Nat. Mater. 9, 253 (2010).
[7] Y. Tokunaga, Nat. Mater. 8, 558 (2009).
[8] C.-L. Jia, S.-B. Mi, K. Urban, I. Vrejoiu, M. Alexe, and D. Hesse, Nat. Mater. 7, 57 (2008).
[9] H. Béa et al., Phys. Rev. Lett. 100, 017204 (2008).
[10] V. T. Tra et al., Adv. Mater. 25, 3357 (2013).
[11] A. Borisevich et al., ACS Nano 4, 6071 (2010).
[12] F. Johann, A. Morelli, D. Biggemann, M. Arredondo, and I. Vrejoiu, Phys. Rev. B 84, 094105 (2011).
[13] C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401 (2005).
[14] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).
[15] A. Lubk, S. Gemming, and N. A. Spaldin, Phys. Rev. B 80, 104110 (2009).
[16] Y. Wang, C. Nelson, A. Melville, B. Winchester, S. Shang, Z.-K. Liu, D. G. Schlom, X. Pan, and L.-Q. Chen, Phys. Rev. Lett. 110, Unsp 267601 (2013).
[17] C. T. Nelson et al., Nano Letters 11, 828 (2011).
[18] Y. Qi, Z. Chen, C. Huang, L. Wang, X. Han, J. Wang, P. Yang, T. Sritharan, and L. Chen, J. Appl. Phys. 111, 104117 (2012).
[19] T. Zhao et al., Nat. Mater. 5, 823 (2006).
[20] S. Y. Yang et al., Nature Nanotechnology 5, 143 (2010).
[21] S. K. Streiffer, C. B. Parker, A. E. Romanov, M. J. Lefevre, L. Zhao, J. S. Speck, W. Pompe, C. M. Foster, and G. R. Bai, J. Appl. Phys. 83, 2742 (1998).
[22] J. Seidel et al., Nat. Mater. 8, 229 (2009).
[23] R. K. Vasudevan et al., Nano Letters 12, 5524 (2012).
[24] P. Maksymovych, J. Seidel, Y. H. Chu, P. Wu, A. P. Baddorf, L.-Q. Chen, S. V. Kalinin, and R. Ramesh, Nano Letters 11, 1906 (2011).
[25] J.-X. Zhu, X.-D. Wen, J. T. Haraldsen, M. He, C. Panagopoulos, and E. E. M. Chia, Scientific Reports 4, 5368 (2014).
50
[26] J. C. Yang et al., Nanoscale 6, 10524 (2014).
[27] J. Seidel, D. Fu, S.-Y. Yang, E. Alarcon-Llado, J. Wu, R. Ramesh, and J. W. Ager, III, Phys. Rev. Lett. 107, 126805 (2011).
[28] A. Bhatnagar, A. R. Chaudhuri, Y. H. Kim, D. Hesse, and M. Alexe, Nature Communications 4, 2835 (2013).
[29] Y.-P. Chiu et al., Advanced Materials 23, 1530 (2011).
[30] M. Tanaka, S. Takebayashi, M. Hashimoto, S. Kashiwaya, F. Hirayama, and M. Koyanagi, Jap. J. Appl. Phys. 32, 35 (1993).
[31] J. Kye, W. Park, B. Kim, Z. Khim, G. Jeong, D. Lee, T. Shim, and J. Lee, Journal of Korean Physical Society 29, 354 (1996).
[32] O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 (2007).
[33] I. Maggio-Aprile, C. Renner, A. Erb, E. Walker, and Ø. Fischer, Phys. Rev. Lett. 75, 2754 (1995).
[34] I. Fridman, L. Gunawan, G. A. Botton, and J. Y. T. Wei, Phys. Rev. B 84, 104522 (2011).
[35] H. L. Edwards, D. J. Derro, A. L. Barr, J. T. Markert, and A. L. de Lozanne, Phys. Rev. Lett. 75, 1387 (1995).
[36] E. W. H. S. H. Pan, J. C. Davis, Review of Scientific Instruments 70, 1459 (1999).
[37] J. Bruer, I. Maggio-Aprile, N. Jenkins, Z. Ristic, A. Erb, C. Berthod, O. Fischer, and C. Renner, Nature Communications 7, 11139 (2016).
[38] H. L. Edwards, J. T. Markert, and A. L. Delozanne, Phys. Rev. Lett. 69, 2967 (1992).
[39] H. L. Edwards, A. L. Barr, J. T. Markert, and A. L. de Lozanne, Phys. Rev. Lett. 73, 1154 (1994).
[40] S. He et al., Nat. Mater. 12, 605 (2013).
[41] C. L. Lu et al., Appl. Phys. Lett. 97, 252905 (2010).
[42] A. Crassous et al., Phys. Rev. Lett. 107, 247002 (2011).
[43] A. Crassous, R. Bernard, S. Fusil, K. Bouzehouane, J. Briatico, M. Bibes, A. Barthelemy, and J. E. Villegas, J. Appl. Phys. 113, 6, 024910 (2013).
[44] Q. Q. Yang, X. B. Ma, Q. Dai, H. Zhang, R. J. Nie, and F. R. Wang, Physica C 492, 181 (2013).
[45] M. Passoni, F. Donati, A. L. Bassi, C. S. Casari, and C. E. Bottani, Phys. Rev. B 79, 045404 (2009).
[46] R. M. Feenstra, Phys. Rev. B 60, 4478 (1999).
[47] P. Martensson and R. M. Feenstra, Phys. Rev. B 39, 7744 (1989).
[48] N. D. Lang, Phys. Rev. B 34, 5947 (1986).
51
[49] B. Koslowski, C. Dietrich, A. Tschetschetkin, and P. Ziemann, Phys. Rev. B 75, 035421 (2007).
[50] R. M. Feenstra, Phys. Rev. B 50, 4561 (1994).
[51] R. M. Feenstra and J. A. Stroscio, Journal of vacuum science & technology B 5, 923 (1987).
[52] R. Ludeke, A. Talebibrahimi, R. M. Feenstra, and A. B. McLean, Journal of Vacuum Science & Technology B 7, 936 (1989).
[53] N. Ishida, K. Sueoka, and R. M. Feenstra, Phys. Rev. B 80, 8, 075320 (2009).
[54] C. Wagner, R. Franke, and T. Fritz, Phys. Rev. B 75, 235432 (2007).
[55] C. Himcinschi et al., J. Appl. Phys. 107, 123524 (2010).
[56] B. C. Huang, Y. T. Chen, Y. P. Chiu, Y. C. Huang, J. C. Yang, Y. C. Chen, and Y. H. Chu, Appl. Phys. Lett. 100, 122903 (2012).
[57] H. Yang et al., Appl. Phys. Lett. 92, 102113 (2008).
[58] J. F. Ihlefeld et al., Appl. Phys. Lett. 92, 142908 (2008).
[59] J. Park, K.-C. Jung, A. Lee, H. Bae, D. Mun, J.-S. Ha, Y.-B. Mun, E. M. Han, and H.-J. Ko, International Journal of Photoenergy, 614320 (2012).