研究生: |
尼科洛 Gabriel Nicolo A. De Guzman |
---|---|
論文名稱: |
應用於發光二極體之超寬帶近紅外光螢光粉調控 Multi-Site Cation Control of Ultra-Broadband Near-Infrared Phosphors for Applications in Light Emitting Diodes |
指導教授: |
胡淑芬
Hu, Shu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 87 |
英文關鍵詞: | Broadband Emission, Cation Control, Multi-Site Substitution |
DOI URL: | http://doi.org/10.6345/NTNU202000129 |
論文種類: | 學術論文 |
相關次數: | 點閱:164 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Near-infrared (NIR) phosphors are fascinating materials that have numerous applications in diverse fields. In this study, a series of La3Ga5GeO14:Cr3+ phosphors, which was incorporated with Sn4+, Ba2+, and Sc3+, was successfully synthesized using solid-state reaction to explore every cationic site comprehensively. The crystal structures were well resolved by combining synchrotron X-ray diffraction and neutron powder diffraction through joint Rietveld refinements. Trapping of free electrons induced by charge unbalances and lattice vacancies changes the magnetic properties, which was well explained by a Dyson curve in electron paramagnetic resonance. Temperature and pressure-dependent photoluminescence spectra reveal various luminescent properties between strong and weak fields in different dopant centers. The highest acquired quantum yield showed to be 23% which was enhanced by the Sc3+ doping. The phosphor-converted NIR light-emitting diode (pc-NIR LED) package demonstrates a superior broadband emission that covers the near-infrared (NIR) region of 650–1050 nm with a radiant power output reaching 23.8 mW at an injection current of 350 mA. This study can provide researchers with new insight into the control mechanism of multiple-cation-site phosphors and reveal a potential phosphor candidate for practical NIR LED application.
(1) Siesler, H. W.; Ozaki, Y.; Kawata, S.; Heise, H. M. Near-Infrared Spectroscopy: Principles, Instruments, and Applications; Wiley-VCH: Weinheim, Germany, 2002.
(2) Wang, Z. Y., Near-Infrared Organic Materials and Emerging Applications; CRC Press: Boca Raton, 2013.
(3) Svoboda, K.; Block, S. M. Biological Applications of Optical Forces. Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 247-285.
(4) Wolf, M.; Ferrari, M.; Quaresima, V. Progress of Near-Infrared Spectroscopy and Topography for Brain and Muscle Clinical Applications. J. Biomed. Opt. 2007, 12, 062104-062114.
(5) Ntziachristos, V.; Bremer, C.; Weissleder, R. Fluorescence Imaging with Near-Infrared Light: New Technological Advances That Enable In-Vivo Molecular Imaging. Eur. Radiol. 2003, 13, 195-208.
(6) Rajendran, V.; Chang, H.; Liu, R.S. Recent Progress on Broadband Near-Infrared Phosphors-Converted Light Emitting Diodes for Future Miniature Spectrometers. Opt. Mater. X. 2019, 1, 100011-100022.
(7) Rajendran, V.; Fang, M. H.; De Guzman, G. N.; Lesniewski, T.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Lin, Y. S.; Lu, K. M.; Lin, C. M.; Chang, H.; Hu, S. F.; Liu, R. S. Super Broadband Near-Infrared Phosphors with High Radiant Flux as Future Light Sources for Spectroscopy Applications. ACS Energy Lett. 2018, 3, 2679-2684.
(8) Shao, Q.; Ding, H.; Yao, L.; Xu, J.; Liang, C.; Jiang, J. Photoluminescence Properties of a ScBO3:Cr3+ Phosphor and its Applications for Broadband Near-Infrared LEDs. RSC Adv. 2018, 8, 12035-12042.
(9) Shao, Q.; Ding, H.; Yao, L.; Xu, J.; Liang, C.; Li, Z.; Dong, Y.; Jiang, J. Broadband Near-Infrared Light Source Derived from Cr3+-Doped Phosphors and a Blue LED Chip. Opt. Lett. 2018, 43, 5251-5254.
(10) Pan, Z.; Lu, Y. Y.; Liu, F. Sunlight-Activated Long-Persistent Luminescence in the Near-Infrared from Cr3+-Doped Zinc Gallogermanates. Nat. Mater. 2011, 11, 58-63.
(11) Zeng, H.; Zhou, T.; Wang, L.; Xie, R. J. Two-Site Occupation for Exploring Ultra-Broadband Near-Infrared Phosphor—Double-Perovskite La2MgZrO6:Cr3+. Chem. Mater. 2019, 31, 5245-5253.
(12) Gao, T.; Zhuang, W.; Liu, R.; Liu, Y.; Yan, C.; Tian, J.; Chen, G.; Chen, X.; Zheng, Y.; Wang, L. Site Occupancy and Enhanced Luminescence of Broadband NIR Gallogermanate Phosphors by Energy Transfer. J. Am. Ceram. Soc. 2019, 103, 202-213.
(13) Zhong, Y.; Gai, S.; Xia, M.; Gu, S.; Zhang, Y.; Wu, X.; Wang, J.; Zhou, N.; Zhou, Z. Enhancing Quantum Efficiency and Tuning Photoluminescence Properties in Far-Red-Emitting Phosphor Ca14Ga10Zn6O35:Mn4+ Based on Chemical Unit Engineering. Chem. Eng. J. 2019, 374, 381-391.
(14) Zhang, L.; Wang, D.; Hao, Z.; Zhang, X.; Pan, G. h.; Wu, H.; Zhang, J. Cr3+‐Doped Broadband Nir Garnet Phosphor with Enhanced Luminescence and Its Application in NIR Spectroscopy. Adv. Opt. Mater. 2019, 1900185-1900193.
(15) Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168-184.
(16) Osborne, B. G. Near-Infrared Spectroscopy in Food Analysis. In Encyclopedia of Analytical Chemistry; Wiley & Sons, Ltd: 2006.
(17) Sathyanarayana, D. N. Vibrational Spectroscopy: Theory and Applications; New Age International (P) Limited: New Delhi, 2004.
(18) Hayashi, D.; van Dongen, A. M.; Boerekamp, J.; Spoor, S.; Lucassen, G.; Schleipen, J. Broadband LED Source in Visible to Short-Wave-Infrared for Spectral Tumor Diagnostics. Appl. Phys. Lett. 2017, 110, 233701-233705.
(19) Bigio, I. J.; Bown, S. G. Spectroscopic Sensing of Cancer and Cancer Therapy Current Status of Translational Research. Cancer Biol. Ther. 2004, 3, 259-267.
(20) Bogomolov, A.; Zabarylo, U.; Kirsanov, D.; Belikova, V.; Ageev, V.; Usenov, I.; Galyanin, V.; Minet, O.; Sakharova, T.; Danielyan, G.; Feliksberger, E.; Artyushenko, V. Development and Testing of an LED-Based Near-Infrared Sensor for Human Kidney Tumor Diagnostics. Sensors (Basel) 2017, 17, 1914-1930.
(21) Nachabe', R.; Evers, D.; Hendriks, B.; Lucassen, G.; van der Voort, M.; Wesseling, J.; Ruers, T. Effect of Bile Absorption Coefficients on the Estimation of Liver Tissue Optical Properties and Related Implications in Discriminating Healthy and Tumorous Samples. Biomed. Opt. Express. 2011, 2, 600-614.
(22) Evers, D. J.; Nachabe, R.; Vranken Peeters, M. J.; van der Hage, J. A.; Oldenburg, H. S.; Rutgers, E. J.; Lucassen, G. W.; Hendriks, B. H.; Wesseling, J.; Ruers, T. J. Diffuse Reflectance Spectroscopy: Towards Clinical Application in Breast Cancer. Breast Cancer Res. Treat. 2013, 137, 155-65.
(23) Pifferi, A.; Farina, A.; Torricelli, A.; Quarto, G.; Cubeddu, R.; Taroni, P. Time-Domain Broadband Near Infrared Spectroscopy of the Female Breast: A Focused Review from Basic Principles to Future Perspectives. J. Near Infrared Spectrosc. 2012, 20, 223-235.
(24) Sun, X.; Xu, Y.; Wu, J.; Zhang, Y.; Sun, K. Detection of Lung Cancer Tissue by Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy-A Pilot Study of 60 Samples. J. Surg. Res. 2013, 179, 33-38.
(25) Hamblin, M. R. Shining Light on the Head: Photobiomodulation for Brain Disorders. BBA Clin. 2016, 6, 113-124.
(26) Hong, G.; Antaris, A. L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010-0032.
(27) Büning-Pfaue, H. Analysis of Water in Food by Near Infrared Spectroscopy. Food Chem. 2003, 82, 107-115.
(28) Galyanin, V.; Melenteva, A.; Bogomolov, A. Selecting Optimal Wavelength Intervals for an Optical Sensor: A Case Study of Milk Fat and Total Protein Analysis in the Region 400–1100 nm. Sens. Actuator. B-Chem. 2015, 218, 97-104.
(29) Melenteva, A.; Galyanin, V.; Savenkova, E.; Bogomolov, A. Building Global Models for Fat and Total Protein Content in Raw Milk Based on Historical Spectroscopic Data in the Visible and Short-Wave Near Infrared Range. Food Chem. 2016, 203, 190-198.
(30) Tkacz-Smiech, K.; Kolezynski, A.; Ptak, W. S. Pauling's Electrostatic Rule for Partially Covalent/Partially Ionic Crystals. J. Phys. Chem. Solids. 2000, 61, 1847-1856.
(31) Malysa, B.; Meijerink, A.; Jüstel, T. Temperature Dependent Cr3+ Photoluminescence in Garnets of the Type X3Sc2Ga3O12 (X = Lu, Y, Gd, La). J. Lumin. 2018, 202, 523-531.
(32) Bai, Q.; Zhao, S.; Guan, L.; Wang, Z.; Li, P.; Xu, Z. Design and Control of the Luminescence of Cr3+-Doped Phosphors in the Near-Infrared I Region by Fitting the Crystal Field. Cryst. Growth Des. 2018, 18, 3178-3186.
(33) Meng, X.; Wang, Z.; Qiu, K.; Li, Y.; Liu, J.; Wang, Z.; Liu, S.; Li, X.; Yang, Z.; Li, P. Design of a Novel Near-Infrared Phosphor by Controlling Cationic Coordination Environment. Cryst. Growth Des. 2018, 18, 4691-4700.
(34) Nazarov, M.; Noh, D. Y. Rare Earth Double Activated Phosphors for Different Applications. J. Rare Earth. 2010, 28, 1-11.
(35) Zhang, Y.; Li, L.; Zhang, X.; Xi, Q. Temperature Effects on Photoluminescence of Yag:Ce3+ Phosphor and Performance in White Light-Emitting Diodes. J. Rare Earth. 2008, 26, 446-449.
(36) Dai, Z.; Boiko, V.; Markowska, M.; Gerus, A.; Grzeszkiewicz, K.; Hölsä, J.; Saladino, M. L.; Hreniak, D. Optical Studies of Y3(Al,Ga)5O12:Ce3+,Cr3+,Nd3+ Nano-Phosphors Obtained by the Pechini Method. J. Rare Earth. 2019, 37, 1132-1136.
(37) Chen, L.; Lin, C. C.; Yeh, C. W.; Liu, R. S. Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Materials. 2010, 3, 2172-2195.
(38) Armaroli, N.; Bolink, H. J. Luminescence: The Never-Ending Story. Top. Curr. Chem (Cham). 2016, 374, 44-46.
(39) Xiang, J.; Chen, J.; Zhang, N.; Yao, H.; Guo, C. Far-Red and Near-Infrared Double-Wavelength Emitting Phosphor Gd2ZnTiO6:Mn4+ , Yb3+ for Plant Cultivation LEDs. Dyes Pigm. 2018, 154, 257-262.
(40) Du, J.; Poelman, D. Near-Infrared Persistent Luminescence in Mn4+ Doped Perovskite Type Solid Solutions. Ceram. Int. 2019, 45, 8345-8353.
(41) Hu, J.; Zhang, Y.; Lu, B.; Xia, H.; Ye, H.; Chen, B. Efficient Conversion of Broad UV–Visible Light to Near-Infrared Emission in Mn4+/Yb3+ Co-Doped CaGdAlO4 Phosphors. J. Lumin. 2019, 210, 189-201.
(42) Malysa, B. Near-Infrared Broadband Emitting Cr3+ Phosphors for Pc-LEDs. Ph.D. Thesis, University of Utrecht, Netherlands, 2019.
(43) Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., Shriver & Atkins Inorganic Chemistry. 5th ed.; W.H. Freeman and Company: New York, 2010.
(44) Ogasawara, K.; Alluqmani, F.; Nagoshi, H. Multiplet Energy Level Diagrams for Cr3+ and Mn4+ in Oxides with OH-Site Symmetry Based on First-Principles Calculations. ECS J. Solid State Sci. Technol. 2015, 5, R3191-R3196.
(45) Brik, M. G.; Srivastava, A. M. Critical Review—A Review of the Electronic Structure and Optical Properties of Ions with d3 Electron Configuration (V2+, Cr3+, Mn4+, Fe5+) and Main Related Misconceptions. ECS J. Solid State Sci. Technol. 2017, 7, R3079-R3085.
(46) Lin, H.; Bai, G.; Yu, T.; Tsang, M. K.; Zhang, Q.; Hao, J. Site Occupancy and Near-Infrared Luminescence in Ca3Ga2Ge3O12:Cr3+ Persistent Phosphor. Adv. Opt. Mater. 2017, 5, 1700227-1700236.
(47) Ryba-Romanowski, W.; Golab, S.; Dominiak-Dzik, G.; Sokolska, I.; Berkowski, M. Optical Study of Chromium Doped LaGaO3 Single Crystal. J. Alloys Compd. 1999, 284, 22-26.
(48) Jia, D.; Lewis, L. A.; Wang, X. J. Cr3+-Doped Lanthanum Gallogermanate Phosphors with Long Persistent IR Emission. Electrochem. Solid-State Lett. 2010, 13, J32-J34.
(49) Yi, X.; Chen, Z.; Ye, S.; Li, Y.; Song, E.; Zhang, Q. Multifunctionalities of Near-Infrared Upconversion Luminescence, Optical Temperature Sensing and Long Persistent Luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+ and Their Potential Coupling. RSC Adv. 2015, 5, 49680-49687.
(50) Zabiliute, A.; Butkute, S.; Zukauskas, A.; Vitta, P.; Kareiva, A. Sol-Gel Synthesized Far-Red Chromium-Doped Garnet Phosphors for Phosphor-Conversion Light-Emitting Diodes That Meet the Photomorphogenetic Needs of Plants. Appl. Opt. 2014, 53, 907-914.
(51) Tragl, S.; Eisert, D.; Lange, S.; Kaufmann, N.; Martin, A.; Bergenek, K. Radiation-Emitting Optoelectronic Component. WIPO. Appl. No. PCT/EP2016/059672, April, 2016.
(52) Yan, W.; Liu, F.; Lu, Y.; Wang, X. J.; Yin, M.; Pan, Z. Near Infrared Long Persistent Phosphoresence in La3Ga5GeO14:Cr3+ Phosphor. Opt. Express. 2010, 18, 20215-20220.
(53) Wu, Y.; Li, Y.; Qin, X.; Chen, R.; Wu, D.; Liu, S.; Qiu, J. Dual Mode NIR Long Persistent Phosphorescence and NIR-to-NIR Stokes Luminescence in La3Ga5GeO14:Cr3+, Nd3+ Phosphor. J. Alloys Compd. 2015, 649, 62-66.
(54) Lu, J.; Mu, Z.; Zhu, D.; Wang, Q.; Wu, F. Luminescence Properties of Eu3+ Doped La3Ga5GeO14 and Effect of Bi3+ Co-Doping. J. Lumin. 2018, 196, 50-56.
(55) Grinberg, M.; Macfarlane, P. I.; Henderson, B.; Holliday, K. Inhomogeneous Broadening of Optical Transitions Dominated by Low-Symmetry Crystal-Field Components in Cr3+-Doped Gallogermanates. Phys. Rev. B. 1995, 52, 3917-3929.
(56) Macfarlane, P. I.; Henderson, B.; Holliday, K.; Grinberg, M. Substitutional Disorder and the Optical Spectroscopy of Gallogermanate Crystals. J. Phys. Condens. Matter. 1996, 8, 3933-3946.
(57) Warren, B. E., X-Ray Diffraction. Dover Publications, Inc.: New York, 1990.
(58) Toby, B. R Factors in Rietveld Analysis: How Good Is Good Enough? Powder Diffr. 2006, 21, 67-70.
(59) Rietveld, H. M. Line Profiles of Neutron Powder Diffraction Peaks for Structure Refinement. Acta Cryst. 1966, 22, 151-152.
(60) Weil, J.; Bolton, J., Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. John Wiley & Sons, Inc.: New Jersey, 2007.
(61) Rajendran, V.; Lesniewski, T.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Lin, Y. S.; Lu, K. M.; Lin, C. M.; Chang, H.; Hu, S. F.; Liu, R. S. Ultra-Broadband Phosphors Converted Near-Infrared Light Emitting Diode with Efficient Radiant Power for Spectroscopy Applications. ACS Photonics. 2019. DOI: 10.1021/acsphotonics.9b01086.
(62) Bos, A. J. J. Theory of Thermoluminescence. Radiat. Meas. 2006, 41, S45-S56.
(63) Chen, R.; McKeever, S., Theory of Thermoluminescence and Related Phenomena. World Scientific Publishing Co. Pte. Ltd: New Jersey, 1997.
(64) Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. Reevaluation of Absolute Luminescence Quantum Yields of Standard Solutions Using a Spectrometer with an Integrating Sphere and a Back-Thinned CCD Detector. Phys. Chem. Chem. Phys. 2009, 11, 9850-9860.
(65) Lin, C. Synthesis and Characterization of Multi-Colored Phosphors for Light-Emitting Diodes. Ph.D. Thesis, National Taiwan University, Taiwan, 2011.
(66) Dudka, A. P. Multicell Model of La3Ga5GeO14 Crystal: A New Approach to the Description of the Short-Range Order of Atoms. Crystallogr. Rep. 2017, 62, 374-381.
(67) Mombourquette, M.; Weil, J.; McGavin, D. Epr-Nmr User’s Manual. Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada 1996.
(68) Ruderman, M. A.; Kittel, C. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Phys. Rev. 1954, 96, 99-102.
(69) Kasuya, T. A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model. Prog. Theor. Phys. 1956, 16, 45-57.
(70) Kamimura, H.; Sugano, S.; Tanabe, Y. Ligand Field Theory and Its Applications. Syokabo, Tokyo 1969, 224-225.
(71) Shannon, R. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A. 1976, 32, 751-767.
(72) Grinberg, M. Spectroscopic Characterization of Disordered Materials Doped with Cromium. Opt. Mater. 2002, 19, 37-45.
(73) Wiśniewski, K.; Zorenko, Y. U.; Gorbenko, V.; Zorenko, T.; Kukliński, B.; Grinberg, M. High Pressure Spectroscopy Study of SCF Tb3Al5O12:Mn4+. J. Phys. Conf. Ser. 2010, 249. 012015-012023.
(74) Mill, B. V.; Maksimov, B. A.; Pisarevsky, Y. V.; Danilova, N. P.; Markina, M. P.; Pavlovska, A.; Werner, S.; Schneider, J. In Phase Transitions in Langasite Family Crystals, Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, 2004., 23-27 Aug. 2004; 52-60.
(75) Pavlovska, A.; Werner, S.; Maximov, B.; Mill, B. Pressure-Induced Phase Transitions of Piezoelectric Single Crystals from the Langasite Family: La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14. Acta Crystallogr. B. 2002, 58, 939-947.