研究生: |
朱允立 |
---|---|
論文名稱: |
含鎳超氧化物歧化酶活性中心之擬態化合物研究―具軸位吡啶配位之含氮硫五牙基二價鎳錯合物之合成、結構及反應性之探討 Sythesis, Structure and Reactivity of N3S2-NiII Complexes Containing Axial Pyridine Relevant to the Active Site of Nickel Superoxide Dismutase (Ni-SOD) |
指導教授: | 李位仁 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 含鎳超氧化物歧化酶 、軸位吡啶 、含氮硫五牙基 |
論文種類: | 學術論文 |
相關次數: | 點閱:86 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了模擬含鎳過氧化物歧化酶 ( Ni-SOD),我們利用兩個立障大的含氮硫五牙配位基H2PPCMP以及H2IPCMP,合成四個鎳錯合物:[Ni(H2PPCMP)](ClO4)2 (1)、Ni(PPCMP) (2)、[Ni(H2IPCMP)](ClO4)2 (3)與Ni(PPCMP) (4),並利用X光繞射結構解析、紫外/可見光光譜、核磁共振光譜以及循環伏安法,針對這類少見又具有吡咯啶/硫代酰胺、軸配位吡啶的鎳錯合物,展現此四個錯合物的特徵。
錯合物2和4是由錯合物1和3經過去質子化所得到,並預期它們會形成正三價鎳錯合物。然而,錯合物2和4在電化學探討出現不可逆的氧化還原行為,意指此二錯合物無法形成穩定的正三價鎳錯合物。
雖然 鎳錯合物 1 與 3 的差別僅在於前者配位基是拉電子基而後者是推電子基,但他們在化學性質上相當不同。其錯合物特徵吸收峰的波長大小可反映配位基的給電子能力。於紫外光/可見光光譜中,以二氯甲烷作溶劑的時候,錯合物 1 特徵吸收峰的波長出現於353 nm,而錯合物 3 在於362 nm 。循環伏安法中以Fc/Fc+ 做為參考電位時,可發現錯合物 3 於0.836V處具有一個ΔEp為87 mV的可逆NiIII/NiII氧化還原峰,而錯合物 1僅具有擬可逆NiIII/NiII氧化還原峰。此現象可能因為錯合物 3的配位基上具有推電子取代基,因此thioamide上的N-H鍵較強,因此在中心鎳離子氧化成正三價時,不易進行去質子反應變成其他物種而分解,所以在循環伏安圖譜中具有可逆的NiIII/NiII氧化還原峰。此結果說明H2IPCMP配位基有機會穩定正三價鎳錯合物。
In order to mimic the Ni-SOD, four nickel complexes, [Ni(H2PPCM P)](ClO4)2 (1), Ni(PPCMP) (2), [Ni(H2IPCMP)](ClO4)2 (3), and Ni(IPC MP) (4), with a bulky ligand , H2PPCMP or H2IPCMP were synthesized and characterized by X-ray diffraction, UV/vis, and 1H-NMR spec- troscopies, and cyclic voltammetry. Such five-coordinate nickel comple- xes containing a mixed thioamide/pyrrolidine ligand were rare in literature.
Complexes 2 and 4 were the deprotonated products of complex 1 and 3, respectively, and expected to form Ni(III) complexes. However, the irreversible redox behavier was observed for complexes 2 and 4 suggestind that both complexes could not form the stable Ni(III) complexes.
Complexes 1 and 3 are only varied by an electron-accepting to an electron-donating ligand, but their chemical properties are quite different. The λmax appears to reflect the donating strength of the ligand. The λmax of 3 is at 362 nm while that of 1 occurs at 353 nm in CH2Cl2. A reversible NiIII/NiII redox couple was observed for complex 3 at 0.836V versus Fc/Fc+ with a ΔEp of 87 mV; whereas, a quasi-reversible NiIII/NiII redox couple was observed for complex 1. This can be easily explained by the fact that the stronger N-H bond of thioamide of 3 results a considerably more reversible oxidation potential and no decomposition was occurred through oxidation process. This result implies that the electron-donaing H2PPCMP better stabilizes the Ni(III) complex after oxidation.
1. Loeffler Petrides Heinrich. Biochemie & Pathobiochemie, 8th Edi- tion. 2007: 123.
2. Karunakaran Chandran; John McCracken; Francis C. Peterson; William E. Antholine; Brian F. Volkman; Balaraman Kalyanaraman. Biochemistry 2010, 49, 10616–10622.
3. Stephejn. Lippar. Acc. Chem. Res. 1982, 15, 318-326.
4. Kuo, C. F. ; Fridovich, I. Biochem. J. 1986, 237, 505-510
5. Patrick S. Quint; John F. Domsic; Diane E. Cabelli; Robert McKenna; David N. Silverman. Biochemistry 2008, 47, 4621–4628.
6. Yue Guan; Michael J. Hickey; Gloria E. O. Borgstahl; Robert A. Hallewell; James R. Lepock; Don O’Connor; Yunsheng Hsieh; Harry S. Nick; David N. Silverman; John A. Tainer. Biochemistry 1998, 37, 4722-4730.
7. Anne-Frances Miller. Acc. Chem. Res. 2008, 41,501-510
8. Anne-Frances Miller; David L. Sorkin; K. Padmakumar. Biochemistry 2005, 44, 5969-5981.
9. Timothy A. Jackson; Thomas C. Brunold. Acc. Chem. Res. 2004, 37, 461-470.
10. Yanjie Li; Deborah B. Zamble. Chem. Rev. 2009, 109, 4617–4643.
11. David P. Barondeau; Carey J. Kassmann; Cami K. Bruns; John A. Tainer; Elizabeth D. Getzoff. Biochemistry 2004, 43, 8038-8047.
12. Adam T. Fiedler; Peter A. Bryngelson; Michael J. Maroney; Thomas C. Brunold. J. Am. Chem. Soc. 2005, 127, 5449-5462.
13. Roxanne M. Jenkins; Michael L. Singleton; Elky Almaraz; Joseph H. Reibenspies; Marcetta Y. Darensbourg. Inorg. Chem. 2009, 48, 7280- 7293.
14. C. S. Mullins; A C. A. Grapperhaus; P. M. Kozlowski. J Biol Inorg Chem 2006, 11, 617–625.
15. Joseph A. Hriljac; Duward F. Shriver. Inorg. Chem. 1987, 26, 3645- 3641.
16. Jan Hanss; Hans-Jörg Krüger. Angew. Chem. Int. Ed. 1998, 37, No. 3.
17. Vaidyanathan Mathrubootham; Jason Thomas; Richard Staples; John McCraken; Jason Shearer; Eric L. Hegg. Inorg. Chem. 2010, 49, 5393–5406.
18. Huaibo Ma; Swarup Chattopadhyay; Jeffrey L. Petersen; Michael P. Jensen. Inorg. Chem. 2008, 47, 7966-7968.
19. Marcello Gennari; Maylis Orio; Jacques P_ecaut; Frank Neese; Marie-Noelle Collomb; Carole Duboc. Inorg. Chem. 2010, 49, 6399- 6401
20. Dorota Gryko; Radosław Lipiński. Eur. J. Org. Chem. 2006, 3864- 3876.
21. George R. Pettit; Sheo Bux Singh; Delbert L. Herald; Paul Lloyd-Williams; Darko Kantoci; Douglas D. Burkett; J6zsef Barkbczy; Fiona Hogan; Terah R. Wardlaw. J. Org. Chem. 1994, 59, 6287-6295.