簡易檢索 / 詳目顯示

研究生: 廖翊凱
Yi-Kai Liao
論文名稱: 改變催化劑和外在環境條件在乙醇蒸氣重組反應中的研究
Investigation of the effects of metals, oxides, operational conditions on the steam reforming of alcohols.
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 116
中文關鍵詞: 催化乙醇蒸氣重組反應
英文關鍵詞: catalyst, ethanol, steam reforming
論文種類: 學術論文
相關次數: 點閱:145下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們系統性的研究十種不同的金屬分別是Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt 和 Au),將其附著在三種不同的金屬氧化物支撐物上來進行氧化乙醇蒸氣重組反應,這三種氧化物支撐物分別是氧化鋁(Al2O3)、氧化鈰(CeO2)和參雜了Dy的鈣鈦礦結構BaZrO3。在各種不同的外界環境條件下來進行反應,像是以不同的乙醇和水的比例、氧氣的改變,能更清楚的了解整個乙醇蒸氣重組反應中,不同催化劑的性能以及它們在反應中可以帶來什麼影響,也可以研究其反應機構。在催化劑的效用中,我們發現Cu、Ag、Au可以幫助乙醇的氧化,而Co、Ni、Pd和Pt可以幫乙醇脫水,另外Ru、Rh、Ir則有助於C-C的斷裂,並產生主要是CO和CO2的副產物,同時也可以有最高的氫氣產率。在支撐物方面,經過煮沸的氧化鋁因為有較高的比表面積和更多的孔洞跟未煮沸的氧化鋁相較起來有更好的反應性在乙重蒸氣重組反應中。CeO2和Dy參雜的BaZrO3則是有較多的氧空穴,讓它們在反應中有較好的反應性。在催化條件下,較高的氧氣和水的乙醇比例可以提高氫氣產率,由於氧氣和水可以幫作在反應中的氧化劑,幫忙乙醇的氧化幫助C-C的鍵斷裂。再者,這被當成氧化劑的兩者會因為CeO2和BZDy中的氧空穴的存在,更加強了它們的交互作用,在反應中會有更好的表現。

    In this thesis, we systematically examine the oxidative steam reforming of ethanol (OSRE) on 10 metals (Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au) on three oxide supports (Al2O3, CeO2 and Dy-doped BaZrO3) at various operational conditions with different Ethanol to O2 and to H2O ratios to elucidate the effects from catalysts and reagents on the catalytic performance for the better understanding of reaction mechanism. In the effect of catalysts, we found that Cu, Ag and Au can help for the oxidation of ethanol, Co, Ni, Pd and Pt favor dehydration of ethanol and Ru, Rh and Ir will help C-C bond cleavage and produce mainly CO and CO2 with the highest hydrogen yield. For the supports, the boiled Al2O3 with higher surface area and more porocity shows better OSRE performance and un-boiled Al2O3. CeO2 and Dy-doped BaZrO3, on the other hand, improve the OSRE result by their oxygen vacancy. In the effect of catalytic condition, higher O2 and H2O to ethanol ratios can also enhance the hydrogen production, attributable to that these oxidants can help for the C-C bond cleavage for the full oxidation of ethanol based on the side-product analysis. Further more, this enhancement can be amplified on the CeO2 and Dy-doped BaZrO3, attributable to the interaction between these oxidants and oxygen vacancy.

    目錄 第一章:緒論 1-1 介紹 12 1-2 乙醇重組反應的基本理論與現階段研究介紹 13 第二章:實驗部分 2-1 實驗用藥品 20 2-2 實驗用氣體 22 2-3 實驗器材與儀器 23 2-4 金屬前驅物用量 24 2-5 使用含浸法製備催化劑 26 2-6 催化劑特性的鑑定 29 2-7 活性測試產物的分析介紹 31 2-8 管柱的活化與檢量線 34 2-9 乙醇重組活性測試 42 2-10 Gas Hour Space Velocity、轉換效率與產率選擇率計算 47 第三章 結果與討論 3-1 ex situ 催化劑特性鑑定分析 49 3-2 不同支撐物對乙醇重組反應之影響 54 3-3 十種金屬在不同氧化物支撐物上的效應 67 3-4 十種金屬在不同氧化物支撐物的比較 77 3-5 氧氣對乙醇重組反應的影響 90 3-6 比較氧氣對不同金屬氧化物的影響 103 3-7 不同的水和乙醇比例對RhBZDy 和RhAl2O3的影響 106 第四章 結論 4-1 結論 112 4-2 未來研究方向 114 參考文獻 圖錄 表錄   圖錄 圖1-1-1產氫方式所佔的比例 13 圖1-2-1 鈣鈦礦結構 18 圖2-5-1 催化劑的製備流程 28 圖2-8-1 氣體檢量線圖表 38 圖2-8-2 液體檢量線圖表 40 圖2-9-1實驗流程 43 圖2-9-2實驗裝置簡圖 44 圖2-9-3汽化槽裝置圖三(內附螺旋片之不鏽鋼法藍 44 圖3-1-1M-BZDy Al2O3的XRD圖 51 圖3-1-3 EDS測試結果(Al2O3) 52 圖3-1-4 EDS元素分析結果(Ce/Al2O3) 53 圖3-1-5 EDS元素分析結果(BZDy/Al2O3) 53 圖3-2-1 不同催化劑下的產物作圖 59 圖3-3-1 Rh、Ru、Ir在不同金屬氧化物下的乙醇轉換效率 67 圖3-3-2 Rh、Ru、Ir在不同金屬氧化物下的氫氣產率 68 圖3-3-3 Cu、Ag、Au在不同金屬氧化物下的乙醇轉換效率 69 圖3-3-4 Cu、Ag、Au在不同金屬氧化物下的氫氣產率 69 圖3-3-5 Co、Ni、Pt、Pd在不同金屬氧化物下的乙醇轉換效率 70 圖3-3-6 Co、Ni、Pt、Pd在不同金屬氧化物下的氫氣產率 70 圖3-3-7 Rh、Ru、Ir在不同金屬氧化物下的C1產物選擇率 71 圖3-3-8 Cu、Ag、Au在不同金屬氧化物下的C1產物選擇率 72 圖3-3-9 Co、Ni、Pt、Pd在不同金屬氧化物下的C1產物選擇率 72 圖3-3-10 Rh、Ru、Ir在不同金屬氧化物下的C2產物選擇率 73 圖3-3-11 Cu、Ag、Au在不同金屬氧化物下的C2產物選擇率 74 圖3-3-12 Co、Ni、Pt、Pd在不同金屬氧化物下的C2產物選擇率 74 圖3-3-13 Rh、Ru、Ir在不同金屬氧化物下的氧化產物選擇率 75 圖3-3-14 Cu、Ag、Au在不同金屬氧化物下的氧化產物選擇率 76 圖3-3-15 Co、Ni、Pt、Pd在不同金屬氧化物下的氧化產物選擇率 76 圖3-4-1 Rh、Ru、Ir在不同金屬氧化物下的乙醇轉換效率 77 圖3-4-2 Rh、Ru、Ir在不同金屬氧化物下的氫氣產率 77 圖3-4-3 Cu、Ag、Au在不同金屬氧化物下的乙醇轉換效率 78 圖3-4-4 Cu、Ag、Au在不同金屬氧化物下的氫氣產率 78 圖3-4-5 Co、Ni、Pt、Pd在不同金屬氧化物下的乙醇轉換效率 79 圖3-4-6 Co、Ni、Pt、Pd在不同金屬氧化物下的氫氣產率C1產物 79 圖3-4-7 Rh、Ru、Ir在不同金屬氧化物下的C1產物選擇率 80 圖3-4-8 Cu、Ag、Au在不同金屬氧化物下的C1產物選擇率 80 圖3-4-9 Co、Ni、Pt、Pd在不同金屬氧化物下的C1產物選擇率 81 圖3-4-10 Rh、Ru、Ir在不同金屬氧化物下的C2產物選擇率 82 圖3-4-11 Cu、Ag、Au在不同金屬氧化物下的C2產物選擇率 82 圖3-4-12 Co、Ni、Pt、Pd在不同金屬氧化物下的C2產物選擇率 83 圖3-4-13 Rh、Ru、Ir在不同金屬氧化物下的氧化產物選擇率 圖3-4-14 Cu、Ag、Au在不同金屬氧化物下的氧化產物選擇率 84 圖3-4-15 Co、Ni、Pt、Pd在不同金屬氧化物下的氧化產物選擇率 圖3-4-16以氧化鋁當支撐物做長時間乙醇蒸氣重組反應下的乙醇轉換效率 86 圖3-4-17 以氧化鋁當支撐物做長時間乙醇蒸氣重組反應下的副產物選擇率 87 圖3-4-18 十種金屬在反應中走的路徑 89 圖3-5-1 Rh、Ru、Ir在不同金屬氧化物上,只通氮氣的乙醇轉換效率 95 圖3-5-2Cu、Ag、Au在不同金屬氧化物上,只通氮氣的乙醇轉換效率 96 圖3-5-3Co、Ni、Pt、Pd在不同金屬氧化物上,只通氮氣的乙醇轉換效率 圖3-5-4 Rh、Ru、Ir在不同金屬氧化物上,只通氮氣的氫氣產率 97 圖3-5-5 Cu、Ag、Au在不同金屬氧化物上,只通氮氣的氫氣產率 圖3-5-6Co、Ni、Pt、Pd在不同金屬氧化物上,只通氮氣的氫氣產率 98 圖3-5-7Rh、Ru、Ir在不同金屬氧化物上,只通氮氣的C1產物 圖3-5-8Cu、Ag、Au在不同金屬氧化物上,只通氮氣的C1產物 99 圖3-5-9Co、Ni、Pt、Pd在不同金屬氧化物上,只通氮氣的C1產物 圖3-5-10Rh、Ru、Ir在不同金屬氧化物上,只通氮氣的C2產物 100 圖3-5-11Cu、Ag、Au在不同金屬氧化物上,只通氮氣的C2產物 圖3-5-12Co、Ni、Pt、Pd在不同金屬氧化物上,只通氮氣的C2產物 101 圖3-5-13Rh、Ru、Ir在不同金屬氧化物上,只通氮氣的氧化產物 圖3-5-14Cu、Ag、Au在不同金屬氧化物上,只通氮氣的氧化產物 102 圖3-5-15Co、Ni、Pt、Pd在不同金屬氧化物上,只通氮氣的氧化產物 圖3-6-1Ir 在不同金屬氧化物和不同的氣體流速下的氫氣產率 103 圖3-6-2Ir 在不同金屬氧化物和不同的氣體流速下的C1選擇率 104 圖3-6-3Ir 在不同金屬氧化物和不同的氣體流速下的C2產率 圖3-6-4Ir 在不同金屬氧化物和不同的氣體流速下的氧化產物選擇率 105 圖3-7-1Rh/Al2O3在不同的水/乙醇比例下的乙醇轉換效率 107 圖3-7-2Rh/BZDy/Al2O3在不同的水/乙醇比例下的乙醇轉換效率 108 圖3-7-3Rh/Al2O3在不同的水/乙醇比例下的氫氣產率 圖3-7-3Rh/BZDy/Al2O3在不同的水/乙醇比例下的氫氣產率 109 圖3-7-4Rh/Al2O3在不同的水/乙醇比例下的C1產物 圖3-7-5Rh/BZDy/Al2O3在不同的水/乙醇比例下的C1產物 110 圖3-7-6Rh/Al2O3在不同的水/乙醇比例下的C2產物 圖3-7-7Rh/BZDy/Al2O3在不同的水/乙醇比例下的C2產物 圖3-7-8Rh/Al2O3在不同的水/乙醇比例下的氧化產物 111 圖3-7-9Rh/BZDy/Al2O3在不同的水/乙醇比例下的氧化產物 112 表錄 表2-1-1 金屬前驅物藥品 20 表2-1-2 其餘藥品 21 表2-1-3 檢量線用藥品 表2-2-1 乙醇重組與氣相層析使用氣體 22 表2-2-2 氣相層析儀檢量線用氣體 表2-3-1 實驗用儀器、耗材與器材 23 表2-4-1 金屬前驅物用量 24 表2-4-2 其餘金屬前驅物用量 25 表2-7-1 分析條件總整理 32 表2-8-1 管柱活化方式 34 表2-8-2 不同日期之氫氣檢量線 35 表2-8-3 檢量線分析儀器型號與其分析物表 36 表2-8-4 檢量線參數公式表 41 表2-9-1 實驗條件 46 表2-10-1 氣體流量對應的GHSV計算結果 47 表3-1-1 EDS元素分析結果(Al2O3) 52 表3-1-2 EDS元素分析結果(Ce/Al2O3) 53 表3-1-3 EDS元素分析結果(BZDy/Al2O3) 53 表3-2-1不同催化劑下的空白測試產物 57 表3-2-2 十種金屬與支撐物於各條件下的乙醇轉換效率 61 表3-2-3 十種金屬與支撐物於各條件下的氫氣產率 62 表3-2-4 十種金屬與支撐物於各條件下的甲烷選擇率 63 表3-2-5 十種金屬與支撐物於各條件下的乙烯選擇率 64 表3-2-6 十種金屬與支撐物於各條件下的二氧化碳選擇率 65 表3-2-7 十種金屬與支撐物於各條件下的乙醛選擇率 66 表3-5-1 十種金屬與支撐物於各條件下的乙醇轉換效率 90 表3-5-2 十種金屬與支撐物於各條件下的氫氣產率 91 表3-5-3 十種金屬與支撐物於各條件下的C1產物選擇率 92 表3-5-4 十種金屬與支撐物於各條件下的C2產物選擇率 93 表3-5-5 十種金屬與支撐物於各條件下的氧化產物選擇率 94 表3-7-1Rh BZDy-Al2O3以不同水的比例下和不同溫度下的產物選擇率 106

    參考文獻
    1. Piscina*a, Pilar Ramı´rez de la and Homs*b, Narcı´s, Use of biofuels to produce hydrogen (reformation processes). Chemical Society Reviews 37, 2459 (2008).
    2. J.R. Salge, G.A. Deluga, L.D. Schmidt*, Catalytic partial oxidation of ethanol over noble metal catalysts. Journal of Catalysis 235 (2005), 69.
    3. Jian-Mei Li, Fei-Yang Huang, Wei-Zheng Weng*, Xiao-Qing Pei, Chun-Rong Luo, Hai-Qiang Lin, Chuan-Jing Huang, Hui-Lin Wan*, Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation to synthesis gas. Catalysis Today 131 (2008), 179.
    4. S. Cavallaro b, V. Chiodo a , S. Freni a ,N. Mondello a , F. Frusteri a, *, Performance of Rh/Al2O3 catalyst in the steam freforming of ethanol: H2 production for MCFC. Applied Catalysis A: General 249 (2003), 119.
    5. Maria A. Goula, Sotiria K. Kontou, Panagiotis E. Tsiakaras*, Hydrogen production by ethanol steam reforming over a commercial Pd/r-Al2O3 catalyst. Applied Catalysis B: Environmental 49 (2004), 135.
    6. Guopeng Wu, Tao Chen, Weiguang Su, Guohua Zhou, Xu Zonga, Zhibin Lei, Can Li, H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst,International Journal of Hydrogen Energy, Volume 33, Issue 4, February 2008, Pages 1243-1251
    7. Fumiaki Sago, Sho Fukuda, Katsutoshi Sato,Katsutoshi Nagaoka, Hiroyasu Nishiguchi,Yusaku Takita,Catalytic behavior of Ni/ZrxTi1−xO2 and the effect of SiO2 doping in oxidative steam reforming of n-butane, International Journal of Hydrogen EnergyVolume 34, Issue 19, October 2009, Pages 8046–8052
    8. Sania M. de Lima a, Adriana M. Silva a, Ivna O. da Cruz a, Gary Jacobs b,Burtron H. Davis b, Lisiane V. Mattos a, Fa’ bio B. Noronha a,* H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2and Pt/CeZrO2 catalysts, Catalysis Today 138 (2008) 162–168
    9. Prakash Biswas, Deepak Kunzru , Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst, Chemical Engineering Journal 136 (2008) 41–49
    10. Nawadee Srisiriwata, Supaporn Therdthianwonga,*, Apichai Therdthianwongb, Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2, i n t e r n a t i onal j o u r n a l o f hydrogen energy 3 4 ( 2 0 0 9 ) 2 2 2 4 – 2 2 3 4
    11. Josh Y.Z. Chiou a, Jia-Yi Siang a, Shih-Yi Yang a, Kuan-Fu Ho a, Chin-Ling Lee a,Chuin-Tih Yeh b,c, Chen-Bin Wanga,* Pathways of ethanol steam reforming over ceria-supported catalysts, i n t e rna t i o n a l journa l o f hydrogen energy xxx ( 2 0 1 2 ) 1 e7
    12. Baocai Zhang, Weijie Cai, Yong Li, Yide Xu, Wenjie Shen*, Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: Reactionmechanism and stability of the catalyst, i n t e r n a t i o n a l journa l o f hydrogen energy 3 3 ( 2 0 0 8 ) 4 3 7 7 – 4 3 8 6
    13. Hua Song, Umit S. Ozkan ∗,Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility, Journal of Catalysis 261 (2009) 66–74
    14. N. Laosiripojanaa,*,W. Sangtongkitcharoenb, S. Assabumrungratb Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbonformation by the redox property of doping CeO2, Fuel 85 (2006) 323–332
    15. Kohei Urasaki, Yasushi Sekine, Sho Kawabe, Eiichi Kikuchi, Masahiko Matsukata *, Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane, Applied Catalysis A: General 286 (2005) 23–29
    16. Shanwen Tao* and John T. S. Irvine, Catalytic Properties of the Perovskite OxideLa0.75Sr0.25Cr0.5Fe0.5O3-ä in Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material, Chem. Mater. 2004, 16, 4116-4121
    17. Ataullah Khan, Thitinat Sukonket, Bappy Saha, and Raphael Idem*, Catalytic Activity of Various 5 wt% Ni/Ce0.5Zr0.33M0.17O2δ Catalysts
    for the CO2 Reforming of CH4 in the Presence and Absence of Steam, Energy Fuels 2012, 26, 365–379
    18. Zahra Sarshar, Zhenkun Sun, Dongyuan Zhao, and Serge Kaliaguine, Development of Sinter-Resistant Core-shell LaMnxFe1-xO3@mSiO2 Oxygen Carriers for Chemical Looping Combustion,
    19. Shanwen Tao,* John T. S. Irvine,* and Steven M. Plint, Methane Oxidation at Redox Stable Fuel Cell Electrode La0.75Sr0.25Cr0.5Mn0.5O3-a, J. Phys. Chem. B 2006, 110, 21771-21776
    20. Chih-Cheng Hung, Shing-Li Chen, Yi-Kai Liao, Chih-Hao Chen, Jeng-Han Wang*, Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3,
    i n t e r n a t i o n a l j ournal o f hydrogen energy 3 7 ( 2 0 1 2 ) 4 9 5 5 e4 9 6 6
    21. N. Laosiripojana a,*, S. Assabumrungrat b, S. Charojrochkul c, Steam reforming of ethanol with co-fed oxygen and hydrogen over Ni on high surface area ceria support, Applied Catalysis A: General 327 (2007) 180–188
    22. Senkan*, Shici Duan and Selim, Catalytic Conversion of Ethanol to Hydrogen Using Combinatorial Methods. Ind. Eng. Chem. Res. 44 (2005), 6381.
    23. Xiaoying Liu, † Bingjun Xu, † Jan Haubrich,† Robert J. Madix,‡ and Cynthia M. Friend*,†,‡, Surface-Mediated Self-Coupling of Ethanol on Gold. J. AM. CHEM. SOC. 131 (2009), 5757.

    下載圖示
    QR CODE