簡易檢索 / 詳目顯示

研究生: 林岳興
Lin, Yueh-Hsin
論文名稱: 利用偶氮染料做為次氯酸鈉指示劑的開發與研究
Development of Sodium Hypochlorite Indicator by Azo Dyes
指導教授: 林震煌
Lin, Cheng-Huang
口試委員: 何佳安
He, Jia-An
李君婷
Li, Jun-Ting
林震煌
Lin, Cheng-Huang
口試日期: 2022/06/15
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 偶氮染料酸性橙7次氯酸鈉消毒紫外可見光譜儀
英文關鍵詞: azo dyes, acid orange 7, sodium hypochlorite, disinfection, UV-Vis spectrometer
研究方法: 實驗設計法比較研究觀察研究
DOI URL: http://doi.org/10.6345/NTNU202200937
論文種類: 學術論文
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 目次 iii 表次 vi 圖次 vii 第一章 緒論 1 1-1 研究目的 1 1-2 次氯酸鈉介紹 2 1-2-1 次氯酸鈉歷史 2 1-2-2 次氯酸鈉消毒的作用與限制 3 1-3 偶氮染料介紹 5 1-3-1 偶氮染料歷史 5 1-3-2 偶氮染料的分類-偶氮基的數目 6 1-3-3 偶氮染料的分類-官能基與應用性能 7 第二章 分析原理及方法 9 2-1 紫外光-可見光譜儀 9 2-1-1 紫外光-可見光譜儀構造 10 2-1-2 次氯酸鈉的紫外-可見光光圖譜 13 2-2 吸光光度計(Photo Absorbance Meter) 14 2-2-1 吸光光度計儀器構造 14 2-3 液相層析電噴灑游離質譜儀(LC/ESI-MS) 16 2-4 次氯酸鈉漂白原理 17 第三章 儀器、藥品與實驗方法 18 3-1 儀器參數 18 3-1-1 紫外可見光譜儀 18 3-1-2 手持式可見光光譜儀 19 3-1-3 液相層析質譜儀(LC/ESI-MS) 21 3-1-4 其他器材列表 22 3-2 藥品列表 24 3-3 實驗方法 26 第四章 結果與討論 27 4-1 偶氮染料對次氯酸鈉檢測範圍 27 4-1-1 直接染料D01凍黃(Direct Yellow 1)27 4-1-2 直接染料D08桃紅(Direct Red 8) 31 4-1-3 直接染料D10牡丹(Direct Red 10) 35 4-1-4 直接染料D11紫醬(Direct Red 11) 39 4-1-5 直接染料D14深藍(Direct Blue 14) 43 4-1-6 直接染料D22翠藍(Direct Blue 22) 47 4-1-7 酸性橙7(Acid Orange 7) 51 4-1-8 本節總整理與討論 56 4-2 六種偶氮染料與次氯酸鈉的反應時間 58 4-3 六種偶氮染料之熱穩定性 62 4-4 七種偶氮染料之篩選結果 66 4-5 酸性橙7延伸研究 66 4-5-1 固態酸性橙7附著於樣品槽的開發 66 4-5-2 酸性橙7與次氯酸鈉的pH值 70 4-5-3 酸性橙7與次氯酸鈉反應動力學探討 72 4-5-4 酸性橙7與次氯酸鈉的反應機制探討 77 第五章 結論 82 參考資料 83

    1. World Health, O. Cleaning and disinfection of environmental surfaces in the context of COVID-19: interim guidance; World Health Organization: Geneva, 2020.
    2. Cole, E.; Rutala, W.; Nessen, L.; Wannamaker, N.; Weber, D., Effect of methodology, dilution, and exposure time on the tuberculocidal activity of glutaraldehyde-based disinfectants. Appl. Environ. Microbiol. 1990, 56 (6), 1813-1817.
    3. Rideout, K.; Teschke, K.; Dimich-Ward, H.; Kennedy, S., Considering risks to healthcare workers from glutaraldehyde alternatives in high-level disinfection. J. Hosp. Infect. 2005, 59 (1), 4-11.
    4. Vizcaino-Alcaide, M.; Herruzo-Cabrera, R.; Fernandez-Acenero, M., Comparison of the disinfectant efficacy of Perasafe® and 2% glutaraldehyde in in vitro tests. J. Hosp. Infect. 2003, 53 (2), 124-128.
    5. Blazejewski, C.; Wallet, F.; Rouzé, A.; Le Guern, R.; Ponthieux, S.; Salleron, J.; Nseir, S., Efficiency of hydrogen peroxide in improving disinfection of ICU rooms. Crit. Care 2015, 19 (1), 1-8.
    6. Falagas, M.; Thomaidis, P.; Kotsantis, I.; Sgouros, K.; Samonis, G.; Karageorgopoulos, D., Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review. J. Hosp. Infect. 2011, 78 (3), 171-177.
    7. Fu, T.; Gent, P.; Kumar, V., Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J. Hosp. Infect. 2012, 80 (3), 199-205.
    8. Pottage, T.; Richardson, C.; Parks, S.; Walker, J.; Bennett, A., Evaluation of hydrogen peroxide gaseous disinfection systems to decontaminate viruses. J. Hosp. Infect. 2010, 74 (1), 55-61.
    9. Gehr, R.; Wagner, M.; Veerasubramanian, P.; Payment, P. J. W. r., Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res. 2003, 37 (19), 4573-4586.
    10. Kitis, M., Disinfection of wastewater with peracetic acid: a review. Environ. Int. 2004, 30 (1), 47-55.
    11. Koivunen, J.; Heinonen-Tanski, H. J. W. r., Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters. Water Res. 2005, 39 (18), 4445-4453.
    12. Wagner, M.; Brumelis, D.; Gehr, R. J. W. E. R., Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent. Water Environ. Res 2002, 74 (1), 33-50.
    13. Zhang, C.; Brown, P. J.; Hu, Z., Thermodynamic properties of an emerging chemical disinfectant, peracetic acid. Sci. Total Environ. 2018, 621, 948-959.
    14. Hoang, T.; Jorgensen, M.; Keim, R.; Pattison, A.; Slots, J., Povidone‐iodine as a periodontal pocket disinfectant. J. Periodont. Res. 2003, 38 (3), 311-317.
    15. Sauerbrei, A.; Wutzler, P., Virucidal efficacy of povidone‐iodine‐containing disinfectants. Lett. Appl. Microbiol. 2010, 51 (2), 158-163.
    16. Adams, D.; Quayum, M.; Worthington, T.; Lambert, P.; Elliott, T., Evaluation of a 2% chlorhexidine gluconate in 70% isopropyl alcohol skin disinfectant. J. Hosp. Infect. 2005, 61 (4), 287-290.
    17. Kramer, A.; Galabov, A.; Sattar, S.; Döhner, L.; Pivert, A.; Payan, C.; Wolff, M.; Yilmaz, A.; Steinmann, Virucidal activity of a new hand disinfectant with reduced ethanol content: comparison with other alcohol-based formulations. J. Hosp. Infect. 2006, 62 (1), 98-106.
    18. Pedersen, L. K.; Held, E.; Johansen, J. D.; Agner, T., Short‐term effects of alcohol‐based disinfectant and detergent on skin irritation. Contact Derm. 2005, 52 (2), 82-87.
    19. Costa, R. T. F.; Pellizzer, E. P.; Vasconcelos, B. C. d. E.; Gomes, J. M. L.; Lemos, C. A. A.; de Moraes, S. L. D., Surface roughness of acrylic resins used for denture base after chemical disinfection: A systematic review and meta‐analysis. Gerodontology 2021, 38 (3), 242-251.
    20. Hassaballah, A. H.; Bhatt, T.; Nyitrai, J.; Dai, N.; Sassoubre, L., Inactivation of E. coli, Enterococcus spp., somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection. Environ. Sci.: Water Res. Technol. 2020, 6 (1), 197-209.
    21. Subha, N.; Prabhakar, V.; Koshy, M.; Abinaya, K.; Prabu, M., Efficacy of peracetic acid in rapid disinfection of Resilon and gutta-percha cones compared with sodium hypochlorite, chlorhexidine, and povidone-iodine. J. Endod. 2013, 39 (10), 1261-1264.
    22. Zhang, H.; Zhao, L.; Liu, D.; Wang, J.; Zhang, X.; Chen, C., Early period corrosion and scaling characteristics of ductile iron pipe for ground water supply with sodium hypochlorite disinfection. Water Res. 2020, 176, 115742.
    23. Zhang, W.; Cheng, H.; Liu, J., Accelerated two-phase oxidation in microdroplets assisted by light and heat without the use of phase-transfer catalysts. ACS Sustain. Chem. Eng 2018, 6 (7), 8125-8129.
    24. Feng, Y.; Smith, D. W.; Bolton, J. R., Photolysis of aqueous free chlorine species (HOCl and OCl–) with 254 nm ultraviolet light. Environ. Eng. Sci. 2007, 6 (3), 277-284.
    25. Girenko, D. V.; Gyrenko, A. o. A.; Nikolenko, N. V., Potentiometric determination of chlorate impurities in hypochlorite solutions. Int. J. Anal. Chem. 2019, 2019.
    26. Siddique, R.; Sureshbabu, N. M.; Somasundaram, J.; Jacob, B.; Selvam, D., Qualitative and quantitative analysis of precipitate formation following interaction of chlorhexidine with sodium hypochlorite, neem, and tulsi. J. Conserv. Dent. 2019, 22 (1), 40.
    27. Kaarsholm, K. M. S.; Kokkoli, A.; Keliri, E.; Mines, P. D.; Antoniou, M. G.; Jakobsen, M. H.; Andersen, H. R., Quantification of Hypochlorite in Water Using the Nutritional Food Additive Pyridoxamine. Water 2021, 13 (24).
    28. Huang, W.; Xie, Z.; Deng, Y.; He, Y., 3, 3′, 5, 5′-tetramethylbenzidine-based quadruple-channel visual colorimetric sensor array for highly sensitive discrimination of serum antioxidants. Sens. Actuators B Chem. 2018, 254, 1057-1060.
    29. Christie, R. M., Colour: A brief historical perspective. In Colour Chemistry, 2007; pp 1-11.
    30. Bafana, A.; Devi, S. S.; Chakrabarti, T., Azo dyes: past, present and the future. Environ. Rev. 2011, 19 (NA), 350-371.
    31. Ueno, C. M.; Mullens, C. L.; Luh, J. H.; Wooden, W. A., Historical review of Dakin's solution applications. J. Plast. Reconstr. Aesthet. Surg. 2018, 71 (9), e49-e55.
    32. Abdul-Wahab, M. I.; Namoos, B. M., Kinetic of Disinfection reaction by Sodium Hypochlorite Solution. Iraqi j. chem. pet. eng 2018, 19 (1), 51-56.
    33. Estrela, C.; Estrela, C. R.; Barbin, E. L.; Spanó, J. C. E.; Marchesan, M. A.; Pécora, J. D., Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113-117.
    34. Fukuzaki, S., Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol. Sci. 2006, 11 (4), 147-157.
    35. Gonçalves, L. S.; Rodrigues, R. C. V.; Andrade Junior, C. V.; Soares, R. G.; Vettore, M. V., The Effect of Sodium Hypochlorite and Chlorhexidine as Irrigant Solutions for Root Canal Disinfection: A Systematic Review of Clinical Trials. J. Endod. 2016, 42 (4), 527-532.
    36. Yates, E.; Yates, A., Johann Peter Griess FRS (1829-88): Victorian brewer and synthetic dye chemist. Notes Rec. R. Soc. Lond. 2016, 70 (1), 65-81.
    37. Ellouze, S.; Kessemtini, S.; Clematis, D.; Cerisola, G.; Panizza, M.; Elaoud, S. C., Application of Doehlert design to the electro-Fenton treatment of Bismarck Brown Y. J. Electroanal. Chem. 2017, 799, 34-39.
    38. Inglesby, M. K.; Zeronian, S. H., Direct dyes as molecular sensors to characterize cellulose substrates. Cellulose 2002, 9 (1), 19-29.
    39. Musnickas, J.; Rupainytė, V.; Treigienė, R.; Ragelienė, L., Dye migration influences on colour: characteristics of wool fabric dyed with acid dye. Fibres Text. East. Eur. 2005, 13, 65-69.
    40. Golka, K.; Kopps, S.; Myslak, Z. W., Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol. Lett. 2004, 151 (1), 203-210.
    41. Akash, M. S. H.; Rehman, K., Ultraviolet-Visible (UV-VIS) Spectroscopy. In Essentials of Pharmaceutical Analysis, Akash, M. S. H.; Rehman, K., Eds. Springer Singapore: Singapore, 2020; pp 29-56.
    42. Alafeef, M.; Moitra, P.; Dighe, K.; Pan, D., RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 2021, 16 (6), 3141-3162.
    43. Kodama, Y.; Fujishima, M., Endosymbiotic Chlorella variabilis reduces mitochondrial number in the ciliate Paramecium bursaria. Sci. Rep. 2022, 12 (1), 8216.
    44. Nomada, H.; Morita, K.; Higuchi, H.; Yoshioka, H.; Oki, Y., Carbon–polydimethylsiloxane-based integratable optical technology for spectroscopic analysis. Talanta 2017, 166, 428-432.
    45. Crutchfield, C. A.; Lu, W.; Melamud, E.; Rabinowitz, J. D., Chapter 16 - Mass Spectrometry-Based Metabolomics of Yeast. In Methods Enzymol., Academic Press: 2010; Vol. 470, pp 393-426.
    46. Lynch, K. L., Chapter 6 - Toxicology: liquid chromatography mass spectrometry. In Mass Spectrometry for the Clinical Laboratory, Nair, H.; Clarke, W., Eds. Academic Press: San Diego, 2017; pp 109-130.
    47. Liigand, P.; Liigand, J.; Kaupmees, K.; Kruve, A., 30 Years of research on ESI/MS response: Trends, contradictions and applications. Anal. Chim. Acta 2021, 1152, 238117.
    48. P. GREGORY, C. V. S., The Degradation of Water-soluble Azo Compounds by Dilute Sodium Hypochlorite Solution. J. Soc. Dye. Colour. 1978, 94 (9), 6.
    49. Kanazawa, H.; Onami, T., Mechanism of the degradation of Orange G by sodium hypochlorite. Color. Technol. 2001, 117 (6), 323-327.
    50. Lau, Y.-Y.; Wong, Y.-S.; Teng, T.-T.; Morad, N.; Rafatullah, M.; Ong, S.-A., Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chem. Eng. J. 2014, 246, 383-390.
    51. Urano, H.; Fukuzaki, S., The Mode of Action of Sodium Hypochlorite in the Decolorization of Azo Dye Orange II in Aqueous Solution. Biocontrol. Sci. 2011, 16 (3), 123-126.
    52. Mani, P.; Fidal, V. T.; Bowman, K.; Breheny, M.; Chandra, T. S.; Keshavarz, T.; Kyazze, G., Degradation of Azo Dye (Acid Orange 7) in a Microbial Fuel Cell: Comparison Between Anodic Microbial-Mediated Reduction and Cathodic Laccase-Mediated Oxidation. Front. Energy Res. 2019, 7.
    53. Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R., Degradation of Synthetic Azo Dyes of Textile Industry: a Sustainable Approach Using Microbial Enzymes. Int. Soil Water Conserv. Res. 2017, 2 (4), 121-131.
    54. Yuan, R.; Ramjaun, S. N.; Wang, Z.; Liu, J., Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J. Hazard. Mater. 2011, 196, 173-9.
    55. Lopez, C.; Valade, A. G.; Combourieu, B.; Mielgo, I.; Bouchon, B.; Lema, J. M., Mechanism of enzymatic degradation of the azo dye Orange II determined by ex situ 1H nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry. Anal. Biochem. 2004, 335 (1), 135-49.

    無法下載圖示 電子全文延後公開
    2027/06/30
    QR CODE