研究生: |
林岳興 Lin, Yueh-Hsin |
---|---|
論文名稱: |
利用偶氮染料做為次氯酸鈉指示劑的開發與研究 Development of Sodium Hypochlorite Indicator by Azo Dyes |
指導教授: |
林震煌
Lin, Cheng-Huang |
口試委員: |
何佳安
He, Jia-An 李君婷 Li, Jun-Ting 林震煌 Lin, Cheng-Huang |
口試日期: | 2022/06/15 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 偶氮染料 、酸性橙7 、次氯酸鈉 、消毒 、紫外可見光譜儀 |
英文關鍵詞: | azo dyes, acid orange 7, sodium hypochlorite, disinfection, UV-Vis spectrometer |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 |
DOI URL: | http://doi.org/10.6345/NTNU202200937 |
論文種類: | 學術論文 |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. World Health, O. Cleaning and disinfection of environmental surfaces in the context of COVID-19: interim guidance; World Health Organization: Geneva, 2020.
2. Cole, E.; Rutala, W.; Nessen, L.; Wannamaker, N.; Weber, D., Effect of methodology, dilution, and exposure time on the tuberculocidal activity of glutaraldehyde-based disinfectants. Appl. Environ. Microbiol. 1990, 56 (6), 1813-1817.
3. Rideout, K.; Teschke, K.; Dimich-Ward, H.; Kennedy, S., Considering risks to healthcare workers from glutaraldehyde alternatives in high-level disinfection. J. Hosp. Infect. 2005, 59 (1), 4-11.
4. Vizcaino-Alcaide, M.; Herruzo-Cabrera, R.; Fernandez-Acenero, M., Comparison of the disinfectant efficacy of Perasafe® and 2% glutaraldehyde in in vitro tests. J. Hosp. Infect. 2003, 53 (2), 124-128.
5. Blazejewski, C.; Wallet, F.; Rouzé, A.; Le Guern, R.; Ponthieux, S.; Salleron, J.; Nseir, S., Efficiency of hydrogen peroxide in improving disinfection of ICU rooms. Crit. Care 2015, 19 (1), 1-8.
6. Falagas, M.; Thomaidis, P.; Kotsantis, I.; Sgouros, K.; Samonis, G.; Karageorgopoulos, D., Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review. J. Hosp. Infect. 2011, 78 (3), 171-177.
7. Fu, T.; Gent, P.; Kumar, V., Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J. Hosp. Infect. 2012, 80 (3), 199-205.
8. Pottage, T.; Richardson, C.; Parks, S.; Walker, J.; Bennett, A., Evaluation of hydrogen peroxide gaseous disinfection systems to decontaminate viruses. J. Hosp. Infect. 2010, 74 (1), 55-61.
9. Gehr, R.; Wagner, M.; Veerasubramanian, P.; Payment, P. J. W. r., Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res. 2003, 37 (19), 4573-4586.
10. Kitis, M., Disinfection of wastewater with peracetic acid: a review. Environ. Int. 2004, 30 (1), 47-55.
11. Koivunen, J.; Heinonen-Tanski, H. J. W. r., Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters. Water Res. 2005, 39 (18), 4445-4453.
12. Wagner, M.; Brumelis, D.; Gehr, R. J. W. E. R., Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent. Water Environ. Res 2002, 74 (1), 33-50.
13. Zhang, C.; Brown, P. J.; Hu, Z., Thermodynamic properties of an emerging chemical disinfectant, peracetic acid. Sci. Total Environ. 2018, 621, 948-959.
14. Hoang, T.; Jorgensen, M.; Keim, R.; Pattison, A.; Slots, J., Povidone‐iodine as a periodontal pocket disinfectant. J. Periodont. Res. 2003, 38 (3), 311-317.
15. Sauerbrei, A.; Wutzler, P., Virucidal efficacy of povidone‐iodine‐containing disinfectants. Lett. Appl. Microbiol. 2010, 51 (2), 158-163.
16. Adams, D.; Quayum, M.; Worthington, T.; Lambert, P.; Elliott, T., Evaluation of a 2% chlorhexidine gluconate in 70% isopropyl alcohol skin disinfectant. J. Hosp. Infect. 2005, 61 (4), 287-290.
17. Kramer, A.; Galabov, A.; Sattar, S.; Döhner, L.; Pivert, A.; Payan, C.; Wolff, M.; Yilmaz, A.; Steinmann, Virucidal activity of a new hand disinfectant with reduced ethanol content: comparison with other alcohol-based formulations. J. Hosp. Infect. 2006, 62 (1), 98-106.
18. Pedersen, L. K.; Held, E.; Johansen, J. D.; Agner, T., Short‐term effects of alcohol‐based disinfectant and detergent on skin irritation. Contact Derm. 2005, 52 (2), 82-87.
19. Costa, R. T. F.; Pellizzer, E. P.; Vasconcelos, B. C. d. E.; Gomes, J. M. L.; Lemos, C. A. A.; de Moraes, S. L. D., Surface roughness of acrylic resins used for denture base after chemical disinfection: A systematic review and meta‐analysis. Gerodontology 2021, 38 (3), 242-251.
20. Hassaballah, A. H.; Bhatt, T.; Nyitrai, J.; Dai, N.; Sassoubre, L., Inactivation of E. coli, Enterococcus spp., somatic coliphage, and Cryptosporidium parvum in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection. Environ. Sci.: Water Res. Technol. 2020, 6 (1), 197-209.
21. Subha, N.; Prabhakar, V.; Koshy, M.; Abinaya, K.; Prabu, M., Efficacy of peracetic acid in rapid disinfection of Resilon and gutta-percha cones compared with sodium hypochlorite, chlorhexidine, and povidone-iodine. J. Endod. 2013, 39 (10), 1261-1264.
22. Zhang, H.; Zhao, L.; Liu, D.; Wang, J.; Zhang, X.; Chen, C., Early period corrosion and scaling characteristics of ductile iron pipe for ground water supply with sodium hypochlorite disinfection. Water Res. 2020, 176, 115742.
23. Zhang, W.; Cheng, H.; Liu, J., Accelerated two-phase oxidation in microdroplets assisted by light and heat without the use of phase-transfer catalysts. ACS Sustain. Chem. Eng 2018, 6 (7), 8125-8129.
24. Feng, Y.; Smith, D. W.; Bolton, J. R., Photolysis of aqueous free chlorine species (HOCl and OCl–) with 254 nm ultraviolet light. Environ. Eng. Sci. 2007, 6 (3), 277-284.
25. Girenko, D. V.; Gyrenko, A. o. A.; Nikolenko, N. V., Potentiometric determination of chlorate impurities in hypochlorite solutions. Int. J. Anal. Chem. 2019, 2019.
26. Siddique, R.; Sureshbabu, N. M.; Somasundaram, J.; Jacob, B.; Selvam, D., Qualitative and quantitative analysis of precipitate formation following interaction of chlorhexidine with sodium hypochlorite, neem, and tulsi. J. Conserv. Dent. 2019, 22 (1), 40.
27. Kaarsholm, K. M. S.; Kokkoli, A.; Keliri, E.; Mines, P. D.; Antoniou, M. G.; Jakobsen, M. H.; Andersen, H. R., Quantification of Hypochlorite in Water Using the Nutritional Food Additive Pyridoxamine. Water 2021, 13 (24).
28. Huang, W.; Xie, Z.; Deng, Y.; He, Y., 3, 3′, 5, 5′-tetramethylbenzidine-based quadruple-channel visual colorimetric sensor array for highly sensitive discrimination of serum antioxidants. Sens. Actuators B Chem. 2018, 254, 1057-1060.
29. Christie, R. M., Colour: A brief historical perspective. In Colour Chemistry, 2007; pp 1-11.
30. Bafana, A.; Devi, S. S.; Chakrabarti, T., Azo dyes: past, present and the future. Environ. Rev. 2011, 19 (NA), 350-371.
31. Ueno, C. M.; Mullens, C. L.; Luh, J. H.; Wooden, W. A., Historical review of Dakin's solution applications. J. Plast. Reconstr. Aesthet. Surg. 2018, 71 (9), e49-e55.
32. Abdul-Wahab, M. I.; Namoos, B. M., Kinetic of Disinfection reaction by Sodium Hypochlorite Solution. Iraqi j. chem. pet. eng 2018, 19 (1), 51-56.
33. Estrela, C.; Estrela, C. R.; Barbin, E. L.; Spanó, J. C. E.; Marchesan, M. A.; Pécora, J. D., Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113-117.
34. Fukuzaki, S., Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol. Sci. 2006, 11 (4), 147-157.
35. Gonçalves, L. S.; Rodrigues, R. C. V.; Andrade Junior, C. V.; Soares, R. G.; Vettore, M. V., The Effect of Sodium Hypochlorite and Chlorhexidine as Irrigant Solutions for Root Canal Disinfection: A Systematic Review of Clinical Trials. J. Endod. 2016, 42 (4), 527-532.
36. Yates, E.; Yates, A., Johann Peter Griess FRS (1829-88): Victorian brewer and synthetic dye chemist. Notes Rec. R. Soc. Lond. 2016, 70 (1), 65-81.
37. Ellouze, S.; Kessemtini, S.; Clematis, D.; Cerisola, G.; Panizza, M.; Elaoud, S. C., Application of Doehlert design to the electro-Fenton treatment of Bismarck Brown Y. J. Electroanal. Chem. 2017, 799, 34-39.
38. Inglesby, M. K.; Zeronian, S. H., Direct dyes as molecular sensors to characterize cellulose substrates. Cellulose 2002, 9 (1), 19-29.
39. Musnickas, J.; Rupainytė, V.; Treigienė, R.; Ragelienė, L., Dye migration influences on colour: characteristics of wool fabric dyed with acid dye. Fibres Text. East. Eur. 2005, 13, 65-69.
40. Golka, K.; Kopps, S.; Myslak, Z. W., Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol. Lett. 2004, 151 (1), 203-210.
41. Akash, M. S. H.; Rehman, K., Ultraviolet-Visible (UV-VIS) Spectroscopy. In Essentials of Pharmaceutical Analysis, Akash, M. S. H.; Rehman, K., Eds. Springer Singapore: Singapore, 2020; pp 29-56.
42. Alafeef, M.; Moitra, P.; Dighe, K.; Pan, D., RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat. Protoc. 2021, 16 (6), 3141-3162.
43. Kodama, Y.; Fujishima, M., Endosymbiotic Chlorella variabilis reduces mitochondrial number in the ciliate Paramecium bursaria. Sci. Rep. 2022, 12 (1), 8216.
44. Nomada, H.; Morita, K.; Higuchi, H.; Yoshioka, H.; Oki, Y., Carbon–polydimethylsiloxane-based integratable optical technology for spectroscopic analysis. Talanta 2017, 166, 428-432.
45. Crutchfield, C. A.; Lu, W.; Melamud, E.; Rabinowitz, J. D., Chapter 16 - Mass Spectrometry-Based Metabolomics of Yeast. In Methods Enzymol., Academic Press: 2010; Vol. 470, pp 393-426.
46. Lynch, K. L., Chapter 6 - Toxicology: liquid chromatography mass spectrometry. In Mass Spectrometry for the Clinical Laboratory, Nair, H.; Clarke, W., Eds. Academic Press: San Diego, 2017; pp 109-130.
47. Liigand, P.; Liigand, J.; Kaupmees, K.; Kruve, A., 30 Years of research on ESI/MS response: Trends, contradictions and applications. Anal. Chim. Acta 2021, 1152, 238117.
48. P. GREGORY, C. V. S., The Degradation of Water-soluble Azo Compounds by Dilute Sodium Hypochlorite Solution. J. Soc. Dye. Colour. 1978, 94 (9), 6.
49. Kanazawa, H.; Onami, T., Mechanism of the degradation of Orange G by sodium hypochlorite. Color. Technol. 2001, 117 (6), 323-327.
50. Lau, Y.-Y.; Wong, Y.-S.; Teng, T.-T.; Morad, N.; Rafatullah, M.; Ong, S.-A., Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chem. Eng. J. 2014, 246, 383-390.
51. Urano, H.; Fukuzaki, S., The Mode of Action of Sodium Hypochlorite in the Decolorization of Azo Dye Orange II in Aqueous Solution. Biocontrol. Sci. 2011, 16 (3), 123-126.
52. Mani, P.; Fidal, V. T.; Bowman, K.; Breheny, M.; Chandra, T. S.; Keshavarz, T.; Kyazze, G., Degradation of Azo Dye (Acid Orange 7) in a Microbial Fuel Cell: Comparison Between Anodic Microbial-Mediated Reduction and Cathodic Laccase-Mediated Oxidation. Front. Energy Res. 2019, 7.
53. Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R., Degradation of Synthetic Azo Dyes of Textile Industry: a Sustainable Approach Using Microbial Enzymes. Int. Soil Water Conserv. Res. 2017, 2 (4), 121-131.
54. Yuan, R.; Ramjaun, S. N.; Wang, Z.; Liu, J., Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J. Hazard. Mater. 2011, 196, 173-9.
55. Lopez, C.; Valade, A. G.; Combourieu, B.; Mielgo, I.; Bouchon, B.; Lema, J. M., Mechanism of enzymatic degradation of the azo dye Orange II determined by ex situ 1H nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry. Anal. Biochem. 2004, 335 (1), 135-49.