簡易檢索 / 詳目顯示

研究生: 江宜庭
Yi-Ting Jiang
論文名稱: 二氧化鈦奈米粒子在有機氣體壓電晶體感測器之應用
Application of TiO2 nanoparticles on piezoelectric crystal sensor for organic gases
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 112
中文關鍵詞: 壓電晶體感測器二氧化鈦奈米
英文關鍵詞: QCM, TiO2, nanoparticles
論文種類: 學術論文
相關次數: 點閱:378下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文是發展並應用TiO2奈米粒子為塗佈物製成壓電晶體感測器去吸附各種有機氣體,當有機氣體吸附在塗佈物上,增加的質量將造成壓電晶體感測器的震盪頻率下降,藉由觀察共振頻率的改變量來達到偵測有機氣體的目的。本研究自行組裝氣體壓電晶體感測器,並使用旋轉塗佈法(spin coating)在晶片電極表面塗佈nano-TiO2/PEG來偵測乙醇、正丁醚、乙醛、丙酮、乙酸、苯、正丙胺、1-己烯、1-己炔等揮發性有機氣體。
    在實驗中,首先鑑定nano-TiO2物理性質,包括UV/Vis.吸收光譜、XRD、SEM。接著探討各種揮發性有機氣體對nano-TiO2壓電感測器所造成頻率變化的影響,包括塗佈量效應、濃度效應、分子量大小、異構物的立障效應等。nano-TiO2/PEG的最佳塗佈量固定約為8μg,偵測訊號較好的是乙酸、1-己烯、乙醛、1-己炔,在脫附訊號方面,乙醛和1-己烯的脫附速率比其他有機物要來得慢,而nano-TiO2壓電感測器對有機氣體都具有不錯的偵測下限,可達ppm。對醇類而言,化合物的分子量愈大,感測訊號強度就愈大,分子量大小和訊號呈正比關係上升;立障大小也會影響訊號強弱,頻率變化量依次為1-propanol>2-propanol和1-butanol>sec-butanol> iso-butanol>tert-butanol。
    本研究把nano-TiO2應用在石英壓電感測器上,對於常見的有機氣體有不錯的感測訊號,加上感測系統體積小、易自行組裝、成本低廉及靈敏度高的優點,可以廣泛應用在化學工廠和工業上對有機氣體之檢測。

    A piezoelectric(PZ) crystal sensor with TiO2 nanoparticles coating was developed and applied to adsorb various organic vapors. When organic vapors are adsorbed on the coated material, the increased mass will result in a decrease of resonant frequency of PZ crystal sensor. By observing the change of the resonant frequency, we can detect these organic vapors. In this study, a home-made computer interface for data processing was designed to detect common organic gases such as ethanol, di-n-butyl ether, acetaldehyde, acetone, acetic acid, benzene, n-propylamine, 1-hexene and 1-hexyne.
    At first, the physical properties of TiO2 nanoparticles was investigated with UV/Vis. spectrum, XRD and SEM. The effects of coating load, concentration, molecule mass, steric hindrance of volatile organic gases on the frequency response of PZ gas sensor were also studied. The optimum coating amount of nano-TiO2/PEG was found be around 8μg. Among these organic vapors, Acetic acid, 1-hexene, acetaldehyde and 1-hexyne showed better responses, and also found that acetaldehyde and 1-hexene had lower desorption rate. The PZ crystal sensor showed good detection limit of ppm level. For alcohol, the larger molecule mass gave, the greater signal responded. Moreover, the frequency shifts depended on steric hindrance were in the order: 1-propanol>2-propanol;1-butanol>sec-butanol> iso-butanol>tert-butanol.
    The PZ crystal sensor based on TiO2 nanoparticles developed in this study had good responses for common organic gases. Furthermore, the sensor which is small, self-assembled easily, cheaper and high sensitivity could be applied for detection of organic gases in the chemical laboratory and industry.

    中文摘要 I 英文摘要 II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1奈米科技 1 1-1-1奈米材料的簡介 2 1-1-2奈米粒徑檢測與分析 6 1-1-3奈米粉末的製備 8 1-1-4奈米材料的應用領域 10 1-2壓電晶體感測器 12 1-2-1壓電晶體的壓電性 12 1-2-2石英振盪器(Quartz oscillation) 14 1-2-3石英震盪器之線路 18 1-2-4振盪頻率之量測 20 1-2-5石英微量天平(Quartz crystal microbalance) 22 1-2-6石英壓電感測器之應用 28 1-2-6.1氣體石英壓電感測器 28 1-2-6.2液體石英壓電感測器 29 1-3二氧化鈦的介紹 31 1-3-1二氧化鈦的晶體結構 31 1-3-2二氧化鈦奈米粒子的製備 34 1-3-3 TiO2奈米薄膜塗佈技術 38 1-3-4二氧化鈦的特性 43 1-3-4.1 光催化特性 43 1-3-4.2 TiO2的表面吸附作用 48 1-3-5二氧化鈦的應用 57 1-4 研究動機及目的 59 第二章 實驗部分 60 2-1實驗藥品與儀器 60 2-1-1藥品 60 2-1-2器材 61 2-1-3儀器 61 2-2石英晶片表面修飾 62 2-2-1石英晶體 62 2-2-2表面塗佈液配製 63 2-2-3表面塗佈法 64 2-3壓電感測系統 65 2-3-1石英壓電晶體起振線路 65 2-3-2靜相氣體壓電感測系統 66 第三章 實驗結果與討論 68 3-1 二氧化鈦奈米粒子之性質鑑定 69 3-1-1 X-ray繞射光譜鑑定 69 3-1-2 紫外光-可見光光譜儀鑑定 70 3-1-3 掃描式電子顯微鏡鑑定 71 3-2 氣相壓電感測系統之偵測訊號 72 3-2-1 各種塗佈物對乙酸感應頻率之比較 72 3-2-2塗佈量對感應頻率變化的影響 74 3-2-3氣體壓電感測器對揮發性有機物感測情形 84 3-2-3.1 nano-TiO2對極性有機物感測情形 84 3-2-3.2 nano-TiO2對非極性有機物感測情形 86 3-2-4待測物濃度對感應頻率變化之影響 88 3-2-4待測物的偵測下限 100 3-2-5氣體壓電感測器對醇類之感應頻率變化 102 第四章 結論 105 參考文獻 107 附錄 A 112

    1.尹邦躍,奈米時代,五南圖書出版公司,2002.
    2.龔建華,你不可不知的奈米科技,世茂出版社,2002,38-45.
    3.Wu, S.
    Y.,http://www.ndhu.edu.tw/~dphysics/teachers/sywu/research.htm 東華大學物理系磁性實驗室
    4.Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 1995, 95, 69-96
    5.林滄浪;鄭有舜,小角度X光散射儀,儀器總覽,1998,5,10-13
    6.林鴻明、林中魁, 奈米科技應用研究與展望, 工業材料, 179, 2001, 84-91.
    7.張立德,奈米材料,五南圖書出版公司,2002,144-145.
    8.Mandelis, A.; Christofides, C., Physics,Chemistry and Technology of Solid State Gas Sensor Devices, John Wiley & Sons, Inc., 1993.
    9.吳朗, 電子陶瓷-壓電,全欣科技圖書,1994.
    10.吳朗, 感測與轉換原理、元件與應用,全欣科技圖書,1992.
    11.彭成鑑,壓電材料,科儀新知,1995,16,18-29.
    12.Buttry, D. A.; Ward, M. D., Measuerment of Interfacial Processes at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance, Chem. Rev. 1992, 1355-1379.
    13.Gerber,E.A.; Sykes,R.A., State of the Art-Quartz Crystal Units and Oscillators, Proceedings of the IEEE, 1966,54,2,103-116.
    14.Ikeda, T., Fundamentals of Piezoelectricity. Oxford. Sci. Publ, 1990.
    15.紀培錦,新電子科技雜誌, 1989,17,196-207.
    16.湯進德,微電子界面技術,全華科技圖書,1984.
    17.袁帝文;黃柏鈞,數位邏輯設計與分析,全欣科技圖書,1992.
    18.江宗達;鍾健文編譯,IBM PC與感測器介面的探討,全華科技圖書,1994.
    19.Lu,C.; Czanderna, C.A.W., Applications of Piezoelectric Quartz Crystal Microbalance. Elsevier Science. New York, 1984.
    20.Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z Phys. A-Hadron. Nucl., 1959, 155, 206-222.
    21.Thompson,M.;Kipling,A.L.;Duncan-Hewitt,W.C.,Thickness-shear-mode Acoustic Wave Sensors in the Liquid Phase A Review, Analyst, 1991, 116, 881-890.
    22.Grate, J. W.; Frye, G. C., Acoustic Wave Sensors, Sensors Update 1996 (2), 37-83.
    23.King,W.H.;Jr.,Piezoelectric Sorption Detector,Anal.Chem., 1964, 36(9), 1735– 1739
    24.Shinar, R.; Liu,G.; Porter, M.D., Graphite Microparticles as Coatings for Quartz Crystal Microbalance-Based Gas Sensors, Anal. Chem.2000, 72, 5981 - 5987
    25.Lu, C.J.; Shih, J.S.,Detection of polar organic vapours with piezoelectric crystals coated with crown ethers, Analytica Chimica Acta ,1995,306(1), 129- 137
    26.Chang, P.; Shih, J.S.,Preparation and application of cryptand-coated piezoelectric crystal gas-chromatographic detector Analytica Chimica Acta ,1998,360, 61-68
    27.Chang, P.; Shih, J.S.,Application of piezoelectric Ru(III)/cryptand-coated quartz crystal gas chromatographic detector for olefins, Analytica Chimica Acta ,1999,380, 55-62.
    28.Shih, J.S.; Chao, Y.C.; Sung, M.F.; Gau, G.J.; Chiou, C. S., Piezoelectric crystal membrane chemical sensors based on fullerene C60, Sensors and Actuators B: Chemical ,2001,76,347-353.
    29.Chang, P.; Shih, J.S.,Multi-channel piezoelectric quartz crystal sensor for organic vapours, Analytica Chimica Acta ,2000, 403, 39-48.
    30.陳巧貞, 多頻道石化工業有機氣體壓電感測器研製與應用, 國立臺灣師範大學化學系碩士論文, 2004.
    31.Wu, T.Z., A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose, Biosensors and Bioelectronics , 1999, 14, 9-18.
    32.Persaud, K.C., Electronic gas and odour detectors that mimic chemoreception in animals, Trends in Analytical Chemistry , 1992, 11, 61-67.
    33.Webber,L. M.; Guilbault, G.G., The adaptation of coated piezoelectric devices for use in the detection of gases in aqueous solutions, Anolylica Chimica Acta., 1977,93,145-151
    34.Konash, P.L.; Bastiaans, G.J., Piezoelectric Crystal as Detectors in Liquid Chromatography, Anal. Chem., 1980, 52,1929-1931.
    35.林俐慧, 碳六十/雙硫醇壓電晶體膜感測器的研製與應用, 國立臺灣師範大學化學系碩士論文, 2000.
    36.Yun, K.S.; Kobatake, E.; Haruyama, T.; Laukkanen, M.L.; Keinanen, K.; Aizawa, M., Use of a Quartz Crystal Microbalance To Monitor Immunoliposome - Antigen Interaction, Anal. Chem.,1998,70,260-264.
    37.Gizeli, E.; Liley, M.; Lowe, C. R.; Vogel, H., Antibody Binding to a Functionalized Supported Lipid Layer: A Direct Acoustic Immunosensor, Anal. Chem., 1997, 69,4808-4813.
    38.陳姿穎, 聚二氟亞乙烯在生化操體壓電感測器之應用及特性分析,國立臺灣師範大學化學系碩士論文, 2002.
    39.Caruso, F.; Rodda, E.; Furlong, D. N.; Niikura, K.; Okahata, Y.,Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development, Anal. Chem., 1997,69(11),2043-2049.
    40.Moulik, S.P.;Paul, B.K., Structure,dynamics and transport properties of microemulsions, Advances in Colloid and Interface Sciene, 1998, 78, 99~195
    41.Bornside, D.; Macoski, C.; Scriven, L., On the Modelling of Spin Coating, J. Imaging Techno., 1987, 13, 122.
    42.Scriven, L. E., Physics and Applications of Dip Coating and Spin Coating , Materials Res. Soc. Symp. Proc., 1988, 121, 717-729.
    43.Seto, T.; Shimada, M.; Okuyama, K., Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method, Aerosol Science and Technology, 1995,23(2), 183-200.
    44.Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238, 37.
    45.Oliva, F. Y.; Avalle, L. B.; Cámara, O. R.; De Pauli, C. P., Adsorption of human serum albumin (HSA) onto colloidal TiO2 particles, Part I, Journal of Colloid and Interface Science, 2003, 261, 299-311.
    46.Venz, P.A.; Frost, R.L.; Kloprogge, J.T., Chemical properties of modied titania hydrolysates, Journal of Non-Cryst. Solids, 276 , 2000, 95-112.
    47.Pan, J. M.; Maschhoff, B. L.; Diebold, U.; Madey, T. E., Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities, J. Vac. Sci. Technol. A, , 1992, 10(4), 2470-2476.
    48.Ronson, T. K.; McQuillan, A. J., Infrared Spectroscopic Study of Calcium and Phosphate Ion Coadsorption and of Brushite Crystallization on TiO2, Langmuir, 2002, 18, 5019-5022.
    49.Henrich, V.E.; Dresselhaus, G.; Zeiger, H.J., J. Solid State Commun., 1977, 24,623.
    50.Lu, G.; Linsebigler, A.; Yates, J.T.; Jr., Ti3+ Defect Sites on TiOz(110): Production and Chemical Detection of Active Sites, J. Phys. Chem., 1994, 98, 11733-11738.
    51.Linsebigler, A.L.; Lu, G.; Yates, J.T.;Jr., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 1995, 95, 735-758.
    52.Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 1995, 95, 69-96.
    53.Göpel,W.; Rocker,G., Intrinsic defects of TiO2(110):Interaction with chemisorbed O2,H2,CO, and CO2, Phys. Rev. B, 1983, 28(6), 3427- 3438.
    54.Pan, J.M.; Maschhoff, B.L.; Diebold, U.; Madey, T.E., Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities, J. Vac. Sci. Technol. A, 1992, 10(4), 2470- 2476
    55.Kobayashi, H.; Yamaguchi, M., Ab initio MO study of adsorption of CO molecule on TiO2 surfaces , Surf. Sci., 1989, 214,466-476.
    56.Beck, D.D.;White, J.M.; Ratcliffe, C.T., Catalytic reduction of carbon monoxide with hydrogen sulfide. 3. Study of adsorption of oxygen, carbon monoxide and carbon monoxide coadsorbed with hydrogen sulfide on anatase and rutile using Auger electron spectroscopy and temperature-programmed desorption, J. Chem. Phys. Chem., 1986, 90, 3132-3136.
    57.Tanaka, K.; White, J.M., Characterization of species adsorbed on oxidized and reduced anatase, J. Phys. Chem., 1982, 86, 4708-4714.
    58.Farfan-Arribas, E.; Madix, R. J., Characterization of the acid-base properties of the TiO2(110) surface by adsorption of amines, J. Phys. Chem. B, 2003, 107, 3225-3233.
    59.Liu, G.; Rodriguez, J. A.; Chang, Z.; Hrbek, J., Adsorption of Methanethiol on Stoichiometric and Defective TiO2(110) Surfaces: A Combined Experimental and Theoretical Study, J. Phys. Chem. B, 2002, 106, 9883-9891.
    60.Lien, C. F.; Lin, Y. F.; Lin Y. S.; Chen, M. T.; Lin, J. L., Adsorption and Surface Reactions of N(C2H5)3 on Powdered TiO2, J. Phys. Chem. B, 2004; 108(47), 18261-18268.
    61.Makarova, O. V.; Rajh, T,; Thurnauer, M. C., Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene, Environ. Sci. Technol., 2000, 34, 4797-4803.
    62.Fujishima, A.; Rao,T.N.; Tryk,D.A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews ,2000,1, 1–21.
    63.Wang, R.; Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces, J. Phys. Chem. B, 1999, 103, 2188-2194.
    64.陳繼仁, TiO2氧偵測器, 科儀新知, 1987, 9(3), 35-41.
    65.行政院勞工委員會, 勞工作業環境空氣中有害物容許濃度標準.
    66.凌永健; 陳秋雲; 黃依萍, 化學分析的偵測極限(上), 科儀新知, 1994, 16(1), 70-83
    67.Skoog, D. A.; West, D. M.; Holler, F. J., Fundamentals of Analytical Chemistry, 7th edition, 1991, 28.

    QR CODE