簡易檢索 / 詳目顯示

研究生: 呂坤陞
論文名稱: 鑭系錳氧化物之光譜及磁力顯微術研究
Optical and magnetic force microscopy studies on manganese oxides
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 140
中文關鍵詞: 龐磁阻光譜電荷有序自旋有序軌道有序
英文關鍵詞: CMR, optical, charge ordering, spin ordering, orbital ordering
論文種類: 學術論文
相關次數: 點閱:140下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究不同厚度之La0.7Sr0.3MnO3薄膜與Nd0.5Ca0.5-ySryMnO3 (y = 0.08及0.09)塊材的光譜響應,分別探討薄膜結構上之奈米顆粒尺度,及薄膜與基板間晶格不匹配的效應、改變二價離子的平均半徑、溫度與外加磁場變化,對錳氧化物的晶格與電子結構造成的影響。
      首先,我們觀察到當La0.7Sr0.3MnO3薄膜厚度超過30 nm時,由於奈米顆粒尺寸增大,遠紅外光譜呈現出與塊材相近的聲子振動響應,並在中紅外光區出現 的電子躍遷吸收;而低溫光譜顯示隨著溫度降低,300 nm厚度之La0.7Sr0.3MnO3薄膜的居德權重增加,中紅外光區極化子的束縛能逐漸下降,顯示樣品在低溫下的導電性漸增,與極化子響應有緊密的關連性,同時也印證了磁力影像上所觀察到鐵磁態磁區隨溫度降低而成長的情形。
      另外,Nd0.5Ca0.5-ySryMnO3在些微Sr摻雜量的改變後,造成了光譜上極大的差異性。y = 0.08樣品在降溫過程中,由於電荷有序性現象,在190 K出現了金屬-絕緣的相轉變現象,並在490 cm-1左右形成了一個能隙,而y = 0.09樣品則一直保持為絕緣態,能隙隨著溫度愈低而增大,但在3 T以上的外加磁場時,卻破壞了其原來的電荷及軌道有序性所造成的絕緣態,展現了金屬態的行為。

    We report a systematic study on the thickness, temperature, and magnetic field dependences of the optical properties of La0.7Sr0.3MnO3 thin films and polycrystalline Nd0.5Ca0.5-ySryMnO3 (y = 0.08 and 0.09). The magnetic force microscope (MFM) images show the stripe magnetic domains, characteristic of 300-nm-thick of La0.7Sr0.3MnO3 films with the perpendicular magnetic anisotropy. Optical reflectance and transmittance measurements provide evidence that there are significance changes of the peak position of the infrared phonon modes and the charge transfer absorption band as a function of thickness. With decreasing temperature, the Drude response of the 300-nm-thick La0.7Sr0.3MnO3 film increases, along with the small polaron binding energy decreases, suggesting that the polaron correlation effect plays an importance role on the transport properties of La0.7Sr0.3MnO3. On the other hand, with decreasing temperature from 300 to 20 K in zero field, the spectral weight of the optical conductivity for both Nd0.5Ca0.5-ySryMnO3 (y = 0.08 and 0.09) samples is suppressed below 0.1 eV, indicating an opening of the charge gap in the charge ordered state. The application of magnetic fields up to 17 T produces no discernible field dependence. Only after ten cyclic runs between 300 and 77 K, the large spectral weights are transferred from high- to low-frequency regions with increasing fields. Additionally, the internal bending and stretching phonon modes of the MnO6 octahedra show a noticeable hardening and broadening above the particular fields. The observed changes in the electronic and phononic excitations of the optical spectra with the external magnetic fields are attributed to a melting of the cooperative charge and orbital orderings in these materials.

    中文摘要 …………………………………………………………… i 英文摘要 …………………………………………………………… ii 目錄 ………………………………………………………………… iv 表目錄 ……………………………………………………………… vi 圖目錄 ……………………………………………………………… vii 第一章 緒論 ………………………………………………………… 1 第二章 研究背景 …………………………………………………… 7 2-1 電荷、軌道、自旋有序性 ………………………………… 8 2-2 相分離 …………………………………………………… 13 第三章 實驗儀器設備與基本原理 ……………………………… 24 3-1 全頻光譜儀 …………………………………………… 24 3-2 掃描探針顯微術 ……………………………………… 24 3-2-1原子力顯微術 …………………………………… 27 3-2-2磁力顯微鏡 ……………………………………… 30 第四章 實驗樣品特性 …………………………………………… 39 4-1 La0.7Sr0.3MnO3薄膜 …………………………………… 39 4-1-1電性量測 ………………………………………… 40 4-1-2磁性量測 ………………………………………… 41 4-1-3表面磁性結構量測 ……………………………… 43 4-2 Nd0.5Ca0.5-ySryMnO3塊材 ………………………………… 44 4-2-1電性量測 ………………………………………… 45 4-2-2磁性量測 ………………………………………… 46 第五章 實驗結果與討論 ………………………………………… 62 5-1 La0.7Sr0.3MnO3薄膜的光譜研究 …………………………… 61 5-1-1 10~60 nm厚度薄膜的室溫光譜 ………………… 62 5-1-2 300 nm厚度薄膜的變溫光譜 …………………… 65 5-2 Nd0.5(Ca,Sr)0.5MnO3塊材的光譜研究 …………………… 70 5-2-1 變溫光譜研究 …………………………………… 70 5-2-2 y = 0.09在不同外加磁場下的光譜研究………… 75 第六章 結論與未來展望 ………………………………………… 137 參考文獻 …………………………………………………………… 139

    [1]Soshin Chikazumi著,張煦、李學養合譯,磁性物理學,聯經出版社,中華民國七十一年八月初版。
    [2]M. N. Baibich, Phys. Rev. Lett. 61, 2427 (1988).
    [3]K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, Appl. Phys. Lett. 63, 1990 (1993).
    [4]S. Jin, T. H. Tiefel, R. M. Fleming, J. M. Phillip, and R. Ramech, Appl. Phys. Lett. 64, 3045 (1994).
    [5]G. H. Jonker and J. H. Van Santen, Physica 16, 337 (1950).
    [6]J. H. Van Santen and G. H. Jonker, Physica 16, 559 (1950).
    [7]周雄,吳俊斌,物理雙月刊26卷第4期 p.581 (2004).
    [8]Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
    [9]C. Zener, Phys. Rev. 81, 440 (1951).
    [10]何家驊、謝光宇、劉瑞琛,電子月刊第11卷第4期 p.162 (2005).
    [11]W. F. Brown, Phys. Rev. 130, 1677 (1693).
    [12]劉祥麟,物理雙月刊第24卷第5期 p.645 (2002).
    [13]R. von Helmolt, J. Wocker, B. Holzapfel, M. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).
    [14]Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
    [15]K. Tobe, T. Kimura, and Y. Tokura, Phys. Rev. B 69, 014407(2004).
    [16]Adriana Moreo, Seiji Yunoki, and Elbio Dagotto, Science 283, 2034 (1999).
    [17]N. Kumar and C. N. R. Rao, J. Solid State Chem. 129, 363 (1997).
    [18]S. Mori, C. H. Chen, and S.-W. Cheong, Nature 392, 473 1998).
    [19]E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
    [20]S. Yunoki and A. Moreo, Phys. Rev. B 58, 6403 (1998).
    [21]P. G. de Gennes, Phys. Rev. 118, 141 (1960).
    [22]Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 80, 1932 (1998) .
    [23]Y. Murakami, J. P. Hill, D. Gibbs, M. Blume, I. Koyama, M. Tanaka, H. Kawata, T. Arima, Y. Tokura, K. Hirota, and Y. Endoh, 81 582 (1998).
    [24]S. Yunoki, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 81, 5612 (1998).
    [25]翁士民,國立台灣師範大學物理研究所碩士論文,93年6月。
    [26]掃描式探針顯微鏡檢測技術基本原理與操作模式介紹,Product Guide。
    [27]Instruction Manual Solver P47, Product Guide, http://www.ndmdt.ru
    [28]V. J. Morris, A. R. Kirby, and A. P. Gunning, Atomic Force Microscopy for Biologists, Imperial College Press: London, 1999.
    [29]Nanosensor Corp., Product Guide, http://www.nanosensors.com
    [30]Mikro Masch Corp., Product Guide, http://www.spmitips.com
    [31]邱裕煌、林鶴南,「磁力顯微術原理及其在磁性薄膜檢測的應用」,科儀新知第19卷第3期(中華民國86年12月):頁41-47。
    [32]NT-MDT Corp., Application Notes, http://www.ndmdt.ru
    [33]Instruction Manual Solver HV, Product Guide, http://www.ndmdt.ru
    [34]郭明憲,國立台灣師範大學物理研究所碩士論文,民國92年7月。
    [35]H. Y. Hwang, S. –W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).
    [36]H. L. Ju, Kannan M. Krishnan, and D. Lederman, J. Appl. Phys. 83, 7073 (1997).
    [37]G. Van Tendeloo, O. I. Lebedev, and S. Amelinckx, J. Magn. Magn. Mater. 211, 73 (2000).
    [38]C. W. Chang, A. K. Debnath, and J. G. Lin, Phys. Rev. B 65, 024422 (2001).
    [39]C. W. Chang, C. Y. Huang, M. F. Dai, and J. G. Lin, J. Phys.: Condense. Matter 12, 9425 (2000).
    [40]M. Tokunaga, N. Miura, Y. Tomioka, and Y. Tokura, Phys. Rev. B 57, 5259 (1998).
    [41]F. Wooten, Optical properties of Solids, Academic, New York (1972).
    [42]Y. Okimoto, T. Katsufuji, T. Ishikawa, T. Arima, and Y. Tokura, Phys. Rev. B 55, 4206 (1997).
    [43]I. Fedorov, J. Lorenzana, P. Dore, G. De Marzi, P. Maselli, P. Calvani, S. W. Cheong, S. Koval, and R. Migoni, Phys. Rev. B 60, 11875 (1999).
    [44]張道宜,長庚大學電子研究所碩士論文,民國93年7月6月。
    [45]J. H. Jung, K. H. Kim. T. W. Noh, E. J. Choi, and Jaejun Yu, Phys. Rev. B 57, R11043 (1998).
    [46]H. J. Lee, J. H. Jung, Y. S. Lee, J. S. Ahn, and T. W. Noh, Phys. Rev. B 60, 5251 (1999).
    [47]K. H. Kim, J. H. Jung, and T. W. Noh, Phys. Rev. Lett. 81, 1517 (1998).
    [48]J. H. Jung, D. –W. Kim, T. W. Noh, H. C. Kim, H. –C. Ri, S. J. Levett, M. R. Lees, D. Mck. Paul, and G. Balakrishnan, Phys. Rev. B 64, 165106 (2001).
    [49]Ch. Hartinger, F. Mayr, J. Deisenhofer, and A. Loidl, Phys. Rev. B 69, 100403 (2004).

    QR CODE