簡易檢索 / 詳目顯示

研究生: 朱奕亭
Chu, Yi-Ting
論文名稱: 電動車使用奈米冷卻液與奈米齒輪油之性能研究
The Study of Performance on Nano-coolant and Nano-gear Oil Used in Electric Vehicles
指導教授: 呂有豐
Lue, Yeou-Feng
口試委員: 莫懷恩
Mo, Hua-Ien
鄧敦平
Teng, Tun-Ping
呂有豐
Lue, Yeou-Feng
口試日期: 2022/07/16
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 109
中文關鍵詞: 奈米氧化石墨烯冷卻液導熱試驗磨潤試驗奈米還原氧化石墨烯齒輪油電能消耗試驗
英文關鍵詞: Graphene oxide nano coolant, Heat conduction test, Reduced graphene oxide, Reduced graphene oxide nano Gear Oil, Power consumption test
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200929
論文種類: 學術論文
相關次數: 點閱:105下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用氧化石墨烯(GO)以及還原氧化石墨烯(rGO)以二階合成法,製成氧化石墨烯冷卻液(GONC)與還原氧化石墨烯齒輪油(RGONGO),製備之GONC與RGONGO濃度為0.025 wt.%、0.05 wt.%、0.1 wt.%及0.2 wt.%,期望上述兩者可具備GO與rGO的各項特性,優化原廠冷卻液與齒輪油性能,達到改善能源消耗的最終目的。為確認二奈米流體之性能是否達到優化原廠流體之效果,分別進行基礎試驗、模擬散熱平台及實車實驗。基礎試驗包含沉降、黏度、比熱、導熱及磨潤等五項試驗;實車實驗則為定速及變速之平路與爬坡電能消耗、爬坡能力實驗,並全程記錄實車各點之溫度變化。
    研究結果顯示基礎試驗判定GONC的最佳濃度為0.05 wt.%;RGONGO最佳濃度則為0.1 wt.%。於比熱試驗中與原廠流體相比GONC可改善達45 %,RGONGO亦有9.1%的改善;導熱係數GONC與RGONGO改善率分別達9.1 %與47.4 % ;磨潤試驗中GONC改善36.1 %而RGONGO則擁有48.4 %的優良改善率。實車實驗除了分別添加GONC、RGONGO外,也進行同時添加GONC與RGONGO的測試,實驗證明無論分別添加單項NFs或是同時添加兩種以上的NFs,對於車輛的節能與爬坡能力皆有正向的影響,尤其將實驗用電動車同時添加GONC與RGONGO,在平路與爬坡定速實驗中,可分別提升4.6 %與2.2 %的行駛里程,變速實驗於平路狀態可降低3.9 %的電能消耗,於爬坡狀態可減少3 %的電能消耗;於各點溫度量測結果,同時添加GONC與RGONGO可在所有實車實驗中,達到減緩元件溫度升高的效果。總體來說,添加GONC與RGONGO對於減少能源的消耗具有正向且顯著的成效。

    This research is based on the second order synthesis method, utilizing graphene oxide (GO) and reduced graphene oxide (rGO), to produce graphene oxide nano coolant (GONC) and reduced graphene oxide nano gear oil (RGONGO) with the expectation that the aforementioned nanofluids can obtain the characteristics of GO and rGO, optimizing original manufacturer’s coolant and gear oil quality, achieving the ultimate objectives of energy consumption improvement. In order to prove the two nanofluids can optimize original fluid manufacturer’s quality, basic experiment, simulation on cooling platform, and field test were conducted respectively. Basic experiment included sedimentation, viscosity, specific heat, thermal conductivity and tribology testing; the field test was conducted applying constant speed and gear shifting variable speed for electricity consumption and gradeability respectively on leveled road and on upslope road, and all temperature changes were recorded throughout the course of the field test.
    The prepared GONC and RGONGO concentration were 0.025 wt.%,
    0.05 wt.%, 0.1 wt.%, and 0.2 wt.%, the optimal concentration of GONC from the basic experiment results was 0.05 wt.%; whereas RGONGO’s optimal concentration was 0.1 wt.% From the specific heat test with the original manufacturer’s fluid, the GONC improved by 45 %, and RGONGO also improved by 9.1 % From the thermal conductivity aspect, GONC and RGONGO improvement rates reached 9.1 % and 47.4 % respectively. From the tribology test, GONC improved 36.1 % and RGONGO reached an excellent improvement rate of 48.4 % Besides adding the GONC and RGONGO separately in the field test, at the same time, experiment was conducted by adding both GONC and RGONGO; the experiment proved that regardless NFs were added separately or with more than two NFs added together, the results showed positive impact in terms of vehicle’s energy saving or climbing capability, especially when applying both GONC and RGONGO in the field test electric vehicle in constant speed, the travel distance improved by 4.6 % on leveled road and 2.2 % on upslope road; as for that in gear shift variable speed, the electricity consumption reduced by 3.9 % on leveled road and 3 % on upslope road. The temperatures measurement results showed that when added GONC and RGONGO at the same time during the field test, the components’ temperature rising rate decreased. In summary, applying GONC and RGONGO, in terms of reducing energy consumption, proves to have positive and significant effects.

    謝辭ⅰ 摘要ⅱ ABSTRACTⅳ 目次ⅵ 圖次ⅷ 表次ⅻ 第一章 緒論1 1.1 前言1 1.2 研究動機2 1.3 研究目的4 1.4 研究方法4 1.5 論文架構6 第二章 文獻探討7 2.1 車輛能源消耗7 2.2 奈米流體7 2.3 氧化石墨烯、還原氧化石墨烯及相關研究13 2.4 電動機車性能檢測方式15 第三章 研究設計與實施19 3.1 奈米粉體檢測20 3.2 樣本製備23 3.3 基礎性質量測32 3.4 模擬散熱平台試驗50 3.5 實車實驗54 第四章 結果分析與討論61 4.1 外觀檢測結果61 4.2 GONC與RGONGO基礎性質量測62 4.3 實車實驗75 第五章 結論與建議95 5.1 結論95 5.2 後續研究與建議96 參考文獻97 符號釋義109

    [1] 政策研究指標資料庫,圖解看世界,資料取自:https://pride.stpi.narl.org.tw/index/graph-world/detail/4b1141ad70bfda5f0170e64424db3fa3
    [2] W. Chen, R. Akram, M.Irfan, W. Iqbal, V. Dagar, A. Acevedo-Duqued, H. B. Saydaliev, “The Asymmetric Nexus between Air Pollution and COVID-19: Evidence from A Non-linear Panel Autoregressive Distributed Lag Model”, Environmental Research, vol. 209, 112848, 2022.
    [3] “2021年新國病大調查 不吸菸的肺癌怎麼來的?”,康健雜誌,2021。資料取自:https://web.commonhealth.com.tw/lungcancer2021/
    [4] P. Rzymski, B. Poniedziałek, J. Rosińska, P. Ciechanowski, M. Peregrym,
    M. Pokorska-Spiewak, … , &R. Flisiak, “Air Pollution Might Affect The Clinical Course of COVID-19 in Pediatric Patients”, Ecotoxicology and Environmental Safety, vol. 239, 113651, 2022.
    [5] 綠色和平, “2020年空氣污染在五大城市造成16萬人早死”,2021。資料取自:https://www.greenpeace.org/taiwan/update/23996/2020%E5%B9%B4%E7%A9%BA%E6%B0%A3%E6%B1%A1%E6%9F%93%E5%9C%A8%E4%BA%94%E5%A4%A7%E5%9F%8E%E5%B8%82%E9%80%A0%E6%88%9016%E8%90%AC%E4%BA%BA%E6%97%A9%E6%AD%BB/
    [6] 行政院環境保護署,空氣污染排放清冊。資料取自:https://air.epa.gov.tw/EnvTopics/AirQuality_6.aspx
    [7] V. Rizza, M. Torre, P. Tratzi, L. Tomassetti, V. Cozza, F. Naso, …, &F. Petracchini, “Effects of Deployment of Electric Vehicles on Air Quality in The Urban Area of Turin (Italy)”, Journal of Environmental Management, vol. 297, 113416, 2021.
    [8] E. F. Choma, J. S. Evans, J. K. Hammitt, J. A. Gomez-Ibanez, J. D. Spengler, “Assessing The Health Impacts of eEectric Vehicles Through Air Pollution in The United States”, Environment International, vol.144, 106015, 2020。
    [9] W. Y. Lin, M. C. Hsiao, P. C. Wu, J. S. Fu, L. W. Lai, H. C. Lai, “Analysis of air quality and health co-benefits regarding electric vehicle promotion coupled with power plant emissions”, Journal of Cleaner Production, vol. 247, 119152, 2020.
    [10] 國家發展委員會,“臺灣2050淨零排放路徑”,2022。資料取自:https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811
    [11] 交通部公路總局統計查詢網,資料取自:https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=11200
    [12] 林珍汝,賴振元,“台灣邁向電動車時代 配電空間與用電量都成挑戰”,2021年04月14日。資料取自:https://news.pts.org.tw/article/521694
    [13] 余志生,汽車理論,中國:機械工業出版社, 2019年。
    [14] S. M. Sohel Murshed, C.A. Nieto de Castro, “Conduction and Convection Heat Transfer Characteristics of Ethylene Glycol Based Nanofluids – A review”, Applied Energy, vol. 184, pp. 681-695, 2016.
    [15] M. H. Ahmadi, A. Mirlohi, M. A. Nazari, R. Ghasempour, “A Review of Thermal Conductivity of Various Nanofluids”, Journal of Molecular Liquids, vol. 265, pp. 181-188, 2018.
    [16] P. D. Srivyas, M.S. Charoo, “Nano lubrication behaviour of Graphite, h-BN and Graphene Nano Platelets for reducing friction and wear”, materialstoday PROCEEDINGS, vol.44, part 1, pp. 7-11, 2021.
    [17] H. He, N. Zhou, C. Sun, “Efficiency Decrease Estimation of a Permanent Magnet Synchronous Machine with Demagnetization Faults”, Energy Procedia, vol. 105, pp. 2718-2724, 2017.
    [18] H. Feng, G. Hong, D. Xiaofeng, “Design and Optimization of A Liquid Cooled Heat Sink for A Motor Inverter in Electric Vehicles”, Applied Energy, vol. 291, 1, 116819, 2021.
    [19] X. Wang, B. Li, D. Gerada, K. Huang, I. Stone, S. Worrall, Y. Yan, “A Critical Review on Thermal Management Technologies for Motors in Electric cars”, Applied Thermal Engineering, vol. 201, A, 117758, 2022.
    [20] K. Holmberg, P, Andersson, A. Erdemir, “Global energy consumption due to friction in passenger cars”, Tribology International, vol. 47, pp. 221-234, 2012.
    [21] G. C. Salmeron, J. Leckner, Fa. Schwack, R. Westbroek, S. Glavatskih, “Greases for electric vehicle motors: thickener effect and energy saving potential”, Tribology International, vol. 167, 107400, 2022.
    [22] L. I. Farfan-Cabrera, “Tribology of electric vehicles: A review of critical components, current state and future improvement trends”, Tribology International, vol. 138, pp. 473-486, 2019.
    [23] R. Vidhya, T. Balakrishnan, B. Suresh Kumar, “Investigation on thermophysical properties and heat transfer performance of heat pipe charged with binary mixture based ZnO-MgO hybrid nanofluids”, Materials Today: Proceedings, vol. 37, pp.3423-3433, 2021.
    [24] G. S. Sokhal, “Numerical study on the behaviour of AL2O3/water nanofluid at multiple flows and concentration”, Materials Today: Proceedings, vol. 37, pp.3296-3300, 2020.
    [25] M. Fares, M. AL-Mayyahi, M. AL-Saad, “Heat transfer analysis of a shell and tube heat exchanger operated with graphene nanofluids”, Case Studies in Thermal Engineering, vol.18, 100584, 2020.
    [26] E. Sadeghinezhad, A. R. Akhiani, H. S. C. Metselaar, S. T. Latibari, M. Mehrali, “Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids”, Applied Thermal Engineering, vol. 175, 115385, 2020.
    [27] X. Li, W. Chen, C. Zou, “The stability, viscosity and thermal conductivity of carbon nanotubes nanofluids with high particle concentration: A surface modification approach”, Powder Technology, vol. 361, pp. 957-967, 2020.
    [28] C. Li, J. Huang, Y. Shang, H. Huang “Study on the flow and heat dissipation of water-based alumina nanofluids in microchannels”, Case Studies in Thermal Engineering, vol. 22, 100746, 2020.
    [29] M. Bahiraei, M. Jamshidmofid, M. Goodarzi, “Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs”, Journal of Molecular Liquids, vol. 273, pp. 88-98, 2019.
    [30] V. Kumar, J. Sarkar “Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation”, International Communications in Heat and Mass Transfer, vol. 91, pp. 239-247, 2018.
    [31] C. Selvam, T. Balaji, D. Mohan Lal, S. Harish, “Convective heat transfer coefficient and pressure drop of water-ethylene glycol mixture with graphene nanoplatelets”, Experimental Thermal and Fluid Science, vol. 80, pp. 67-76, 2017.
    [32] G. D. Xia, R. Liu, J. Wang, M. Du, “The characteristics of convective heat transfer in microchannel heat sinks using Al2O3 and TiO2 nanofluids”, International Communications in Heat and Mass Transfer, vol. 76, pp. 256-264, 2016.
    [33] D. Sandhya, M. Chandra Sekhara Reddy, V. Vasudeva Rao, “Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids”, International Communications in Heat and Mass Transfer, vol. 78, pp .121-126, 2016.
    [34] F. Kilinc, E. Buyruk, K. Karabulut, “Experimental investigation of cooling performance with graphene based nano-fluids in a vehicle radiator”, Heat and Mass Transfer, vol. 56, pp. 521-530, 2020.
    [35] F. Abbas, H. M. Ali, T. R. Shah, H. Babar, M. M. Janjua, U. Sajjad, M. Amer, “Nanofluid: Potential evaluation in automotive radiator”, Journal of Molecular Liquids, vol. 297, 112014, 2020.
    [36] S. A. Ahmed, M. Ozkaymak, A. Sozen, T. Menlik, A. Fahed, “Improving car radiator performance by using TiO2-water nanofluid”, Engineering Science and Technology, an International Journal, vol. 21, pp. 996-1005, 2018.
    [37] D. G. Subhedar, B. M. Ramani, A. Gupta, “Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant”, Case Studies in Thermal Engineering, vol. 11, pp. 26-34, 2018.
    [38] C. Selvam, R. Solaimalai Raja, D. Mohan Lal, S. Harish, “Overall heat transfer coefficient improvement of an automobile radiator with graphene based suspensions”, International Journal of Heat and Mass Transfer, vol. 115, pp. 580-588, 2017.
    [39] Y. Mukkamala, “Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins”, Renewable and Sustainable Energy Reviews, vol. 76, pp. 1208-1229, 2017.
    [40] H. M. Ali, H. Ali, H. Liaquat, H. T. Bin Maqsood, M. A. Nadir, “Experimental investigation of convective heat transfer augmentation for car radiator using ZnO–water nanofluids”, Energy, vol. 84, pp. 317-324, 2015.
    [41] A. Adebogun, R. Hudson, A. Matthews, P. J. Withers, “Industrial Gear Oils: Influence of Bulk Oil Temperature and Contact Pressure on Tribological Performance and Subsurface Changes”, Tribology Letters volume, vol. 68, 48, 2020.
    [42] J. J. Yeoh, G. W. Heoy, Y. H. Teoh ,H. G. Chuah, “A Study on the Tribological Performance of Nanolubricants”, Processes , 8(11), 137, 2020.
    [43] C. Wang, J. Sun, C. Ge, H. Tang, P. Wu, “Synthesis, characterization and lubrication performance of reduced graphene oxide-Al2O3 nanofluid for strips cold rolling”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 637, 128304, 2022.
    [44] L. Syam Sundar, Z. Said, B. Saleh, M. K. Singh, A. C. M. Sousa, “Combination of Co3O4 deposited rGO hybrid nanofluids and longitudinal strip inserts: Thermal properties, heat transfer, friction factor, and thermal performance”, Thermal Science and Engineering Progress, vol. 20, 100695, 2020.
    [45] X. Li, X. Xu, Y. Zhou, K. R. Lee, A.g Wang, “Insights into friction dependence of carbon nanoparticles as oil-based lubricant additive at amorphous carbon interface”, Carbon, vol. 150, pp. 465-474, 2019.
    [46] S. Du, J. Sun, P. Wu, “Preparation, characterization and lubrication performances of graphene oxide-TiO2 nanofluid in rolling strips”, Carbon, vol. 140, pp. 338-351, 2018.
    [47] Y. Wang, C. Li, Y. Zhang, B. Li, M. Yang, X. Zhang…&M. Zhai, “Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment”, Journal of Manufacturing Processes, vol. 26, pp. 94-104, 2027.
    [48] Graphene-Info, “What is Graphene”, Retrived
    https://www.graphene-info.com/graphene-introduction
    [49] N. Sharma, V. Sharma, Y. Jain, M. Kumari, “Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application”, Macromolecular Symposia, vol. 376, 1700006, 2017.
    [50] Y. Liu, K. J. Wei, Z. B. Zhang, J. Xing, “Thermal conductivity enhancement of water by adding graphene Nano-sheets: Consideration of particle loading and temperature effects”, International Communications in Heat and Mass Transfer, vol. 109, 104353, 1029.
    [51] A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, L. Sun, “Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites”, Nano Materials Science, vol. 1, 1, pp. 31-47, 2019.
    [52] M. Esquivel-Gaon, N. H. A. Nguyen, M. F. Sgroi, D. Pullini, F. Gili,
    D. Mangherini…&V. Castagnola, “In vitro and environmental toxicity of reduced graphene oxide as an additive in automotive lubricants”, Nanoscale, vol. 10, 6539-6548, 2018.
    [53] S. Torii, “Enhancement of heat transfer performance in pipe flow using graphene-oxide-nanofluid and its application”, Materials Today: Proceedings, vol. 35, pp. 506-511, 2021.
    [54] A. Hosseinghorbani, M. Mozaffarian, G. Pazuki, “Application of graphene oxide IoNanofluid as a superior heat transfer fluid in concentrated solar power plants”, International Communications in Heat and Mass Transfer, vol. 111, 104450, 2020.
    [55] H. Ijaz, H. Raza, G. A. Gohar, S. Ullah, A. Akhtar, M. Imran, “Effect of graphene oxide doped nano coolant on temperature drop across the tube length and effectiveness of car radiator – A CFD study”, Thermal Science and Engineering Progress, vol. 20, 100689, 2020.
    [56] M. R. Esfahani, E. M. Languri, “Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids”, Experimental Thermal and Fluid Science, vol. 83, pp. 100-106, 2017.
    [57] M. R. Esfahani, E. M. Languri, M. R. Nunna, “Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid”, International Communications in Heat and Mass Transfer, vol. 76, pp. 308-315, 2016.
    [58] Z. Hajjar, A. M. Rashidi, A. Ghozatloo, “Enhanced thermal conductivities of graphene oxide nanofluids”, International Communications in Heat and Mass Transfer, vol. 57, pp. 128-131, 2014.
    [59] B. Jin, J. Zhao, Y. He, G. Chen, Y. Li, C. Zhang, J. Luo, “High-quality ultra-flat reduced graphene oxide nanosheets with super-robust lubrication performances”, Chemical Engineering Journal, vol. 438, 135620, 2022.
    [60] B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, I. Visoly-Fisher, “Role of oxygen functional groups in reduced graphene oxide for lubrication”, Scientific Reports, 7, 45030, 2017.
    [61] 行政院經濟部標準檢驗局,標準總號:CNS15819-1。取自:https://www.cnsonline.com.tw/,2015年。
    [62] 行政院經濟部標準檢驗局,標準總號:CNS15819-4。取自:https://www.cnsonline.com.tw/,2015年。
    [63] 行政院經濟部標準檢驗局,標準總號:CNS3105。取自:https://www.cnsonline.com.tw/,2009年。
    [64] A. G. Hsieh, S. Korkut, C. Punckt, and I. A. Aksay, “Dispersion Stability of Functionalized Graphene in Aqueous Sodium Dodecyl Sulfate Solutions” Langmuir, vol. 29, 48, pp. 14831 – 14838, 2013.
    [65] X. Li, S. Huang, Y. Wu, H. Huang, “Performance evaluation of graphene oxide nanosheet water coolants in the grinding of semiconductor substrates”, Precision Engineering, vol. 60, pp. 291-298, 2019.
    [66] S. Singh, X. Chen, C. Zhang, R. Tyagi, J. Luo, “Investigation on the lubrication potential of graphene oxide aqueous dispersion for self-mated stainless steel tribo-pair”, Vacuum, vol. 166, pp. 307-315.
    [67] M.J. Bai, J.L. Liu, “Heat transfer and mechanical friction reduction properties of graphene oxide nanofluids” Diamond and Related Materials, vol. 108, 107982, 2021.
    [68] M. Goodarzi, T. Tlili, H. Moria, T. A. Alkanhal ,R. Ellahi, A. E. Anqi, M. R. Safaei “Boiling heat transfer characteristics of graphene oxide nanoplatelets nano-suspensions of water-perfluorohexane (C6F14) and water-n-pentane” Alexandria Engineering Journal, vol. 59, pp. 4511-4521, 2020.
    [69] Y. R. Son, K. Y. Rhee, S. J. Park, “Influence of reduced graphene oxide on mechanical behaviors of sodium carboxymethyl cellulose”, Composites Part B: Engineering, vol. 83, pp. 36-42, 2015.
    [70] W. Dai, J. Wang, X. Gan, H. Wang, X. Su, X. Chen “A systematic investigation of dispersion concentration and particle size distribution of multi-wall carbon nanotubes in aqueous solutions of various dispersants” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 589, 124369, 2020.
    [71] M. K. A. Ali, H. Xianjun, M. A. Abdelkareem, M. Gulzar and A. H. Elsheikh, “Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines”, Tribology International, vol. 124, pp. 209-229, 2018.
    [72] Y. R. Son, K. Y. Rhee, S. J. Park “Influence of reduced graphene oxide on mechanical behaviors of sodium carboxymethyl cellulose” Composites Part B: Engineering, vol. 83, pp. 36-42.
    [73] 行政院經濟部標準檢驗局,標準總號:CNS8951。取自:https://www.cnsonline.com.tw/,1982年。
    [74] I. Bychko, A. Abakumov, O. Didenko, M. Chen, J. Tang, P. Strizhak “Differences in the structure and functionalities of graphene oxide and reduced graphene oxide obtained from graphite with various degrees of graphitization” Journal of Physics and Chemistry of Solids, vol. 164, 110614, 2022.
    [75] 醫學百科,阿拉伯膠。取自:http://cht.a-hospital.com/w/%E9%98%BF%E6%8B%89%E4%BC%AF%E8%83%B6,2013年。
    [76] R. Bardool, A. Bakhtyari, F. Esmaeilzadeh, X. Wang, “Nanofluid viscosity modeling based on the friction theory” Journal of Molecular Liquids, vol. 286, 110923, 2019.
    [77] T. Ramamurthy, S. Krishnan, “Influence of viscosity on the thermal behavior of fluids in a sealed can” Alexandria Engineering Journal, vol. 61, 10, pp. 7833-7842, 2022.
    [78] A. Chouhan, H. P. Mungse, O. P. Khatri, “Surface chemistry of graphene and graphene oxide: A versatile route for their dispersion and tribological applications” Advances in Colloid and Interface Science, vol. 283, 102215, 2020.

    下載圖示
    QR CODE