簡易檢索 / 詳目顯示

研究生: 魏永泰
Yung-Tai Wei
論文名稱: 鉿基氧化物鐵電特性及負電容效應電晶體試製及分析
The Ferroelectric Characteristic of Hafnium Oxide-Based with Processing of Negative Capacitance Field-Effect Transistor
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 61
中文關鍵詞: HfO2:Zr反鐵電低次臨界擺幅負電容
英文關鍵詞: HfO2:Zr, AFE, steep subthreshold swing transistors, NC
論文種類: 學術論文
相關次數: 點閱:353下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對未來 sub-10nm 發展,節能電晶體將是決勝關鍵,低次臨界擺幅電
    晶體發展關係到 V dd 降低之節能發展,而負電容觀念為其中一種可能,於
    2008 年由 UC Berkeley 的 S. Salahuddin 教授所揭露負電容觀念有助於 body
    factor 小於 1,利用結晶的鐵電介電質得到負電容,以 PZT/STO 材料模擬增
    強電容的作用也被提出,EPFL 進而使用 P(VDF-TrFE)材料於實驗上展現成
    果,負電容閘極堆疊俱有內部電壓放大的效果。
    本研究的目標就是發展利用鐵電負電容,達到低次臨界擺幅次世代電
    晶體研究,目前發表的負電容論文所使用的鐵電材料多是用鋯鈦酸鉛(PZT)、
    鉭酸鍶鉍(SBT)、鈦酸鍶(STO)…,這些材料由於與矽的熱力學上不相容,
    且這些材料部分元素具有毒性汙染,並會造成 MOSFET 製程不相容,故於
    此計劃將發展 oxide-based,如 HfO 2 , HfO 2 :Si, HfO 2 :Zr,也都有機會造成極
    化效果,及反鐵電效果達到 MOSCAP 時有負電容效應,目標則是改善次臨
    界擺幅(subthreshold swing),探討其中物理,故具實用性及新穎性。並予以
    模擬手法,將理論觀點導入並尋求超陡峭電晶體的可能,故俱獨特性。

    For the development of sub-10nm technology node, the devices with
    energy conservation and carbon reduction is necessary. The steep subthreshold
    swing FET may be the solution with lowing V dd , and negative capacitance
    concept is a candidate for this requirement. Prof. S. Salahuddin, UC Berkeley,
    has disclosed the concept of negative capacitance for body factor < 1 in 2008.
    They reported the metastable of Gibbs free energy to obtain negative
    capacitance effect, and simulated by PZT/STO. EPFL also experimented to
    demonstrated the negative capacitance concept with P(VDF-TrFE) and reported
    the voltage amplification.
    In this project, we will develop the low swing FET by negative capacitance concept. We
    will develop it on MOS-base line platform for sub-10nm technology node. We will make
    effort in the development the ferroelectric oxide-based dielectric MOSFET. The reports
    disclosed the FE material are PZT, SBT, STO…etc. with lots of issues such as, process
    incompatible, toxic…etc. Therefore, the oxide-based with ferroelectric negative capacitance is
    necessary, such as HfO 2 , HfO2:Si, HfO 2 :Zr. The NC with AFE is the approach and discuss the
    physics for the practicability and novelty. We also including the simulation and modeling to
    predict the high performance selector structure. It is uniqueness.

    V 目錄 Publication List …………………………………………………………………I 中文摘要………………………………………………………………………II Abstract………………………………………………………………………III 致謝…………………………………………………………………………IV 目錄……………………………………………………………………………V 圖目錄………………………………………………………………………VIII 表目錄………………………………………………………………………XIII 第一章 緒論 1-1 場效應電晶體元件的微縮…………………………………………………1 1-2 追求低次臨界擺幅…………………………………………………………2 1-3 低次臨界擺幅的元件………………………………………………………4 1-3-1 電晶體操作機制 Newconcept……………………………………5 1-3-2 電晶體材料 New material…………………………………………5 1-3-3 電晶體結構 New structure…………………………………………6 第二章 文獻回顧與論文導讀 2-1 負電容元件的可能性與模擬文獻………………………………………7 2-2 負電容元件的實做文獻………………………………………………12 2-3 鐵電材料-鉿基氧化物………………………………………………16 VI 第三章 鐵電負電容異質穿隧場效電晶體 3-1 實驗動機………………………………………………………………20 3-2 元件製作流程與設計……………………………………………………22 3-3 MFMOS 鐵電層量測及分析………………………………………………24 3-3-1 鈣鈦礦結構與 PZT 的極化…………………………………………24 3-3-2 MFMOS 結構之鐵電層分析…………………………………………26 3-4 HTFET 閘極堆疊 PZT 前後的元件特性比較……………………………29 3-4-1 HTFET 與 NC-HTFET 電流特性比較………………………………29 3-4-2 HTFET 與 NC-HTFET 電性模擬比較………………………………30 3-5 NC-HTFET 的結果與討論………………………………………………33 第四章 實驗驗證 HZO 的反鐵電性於負電容場效電晶體 4-1 實驗動機…………………………………………………………………34 4-2 元件製作流程……………………………………………………………35 4-3 HZO 的量測與分析………………………………………………………38 4-3-1 HZO的漏電流與K值…………………………………………………38 4-3-2 HZO的晶相…………………………………………………………40 4-3-3 HZO的polarization……………………………………………………41 4-3-4 HZO的Gibb’s free energy 和 surface potential ……………………43 VII 4-4 HZO 於元件閘極之應用…………………………………………………45 4-5 NC 元件之功率消耗………………………………………………………47 4-6 HZO 反鐵電性於閘極電晶體結論………………………………………48 第五章結論與未來工作 5-1 綜合討論…………………………………………………………………49 5-2 未來工作…………………………………………………………………50 參考文獻……………………………………………………………………53 附錄 …………………………………………………………………………57

    53

    參考文獻
    [1] S. Wolf, "Silicon Processing for the VLSI Era*, Vol-2,
    p.338, Lattice Press, 1990.
    [2] S. Wolf, "Silicon Processing for the VLSI Era*, Vol-2,
    p.340, Lattice Press, 1990.
    [3] International Technology Roadmap for Semiconductors (ITRS)
    Roadmap, 2009.
    [4] A. Chen, “Nanoelectronic Device Research for beyond-CMOS
    Technologies” in “Emerging Technologies for the post 14nm Node
    Area,” in IEEE IEDM short course, Dec. 8, 2012.
    [5] H.-S. Philip Wang, “Introduction and Overview” in “VLSI
    Technology Beyond 14 nm Node,” IEEE IEDM short course, Dec. 4,
    2011.
    [6] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger,
    “Ferroelectricity in Hafnium Oxide:CMOS compatible Ferroelectric
    Field Effect Transistors,’’ in IEDM., pp. 547-550, 2011.
    [7] S.-Y. Wu, “A new ferroelectric memory device,
    metal-ferroelectric-semiconductor transistor,’’ Trans. on Electron
    Devices, vol 21, p. 499, 1974.
    [8] M. H. Lee, J.-C. Lin, Y.-T. Wei, C.-W. Chen, H.-K. Zhuang, and M.
    Tang, “Ferroelectric Negative Capacitance Hetero-Tunnel
    Field-Effect-Transistors with Internal Voltage Amplification, ”
    accepted in International Electron Devices Meeting (IEDM), 2013.
    [9] S. Salahuddin, and S. Datta, ‘‘Can the subthreshold swing in a
    classical FET be lowered below 60 mV/decade?,’’ in IEDM Tech.

    54

    Dig., pp. 693-696, 2008.
    [10] S. Salahuddin and S. Datta, “Use of Negative Capacitance to
    ProvideVoltage Amplification for Low PowerNanoscale Devices,’’
    Nano Lett., Vol. 8, No. 2, pp. 405-410, 2008
    [11] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric
    Negative Capacitance MOSFET: Capacitance Tuning &
    Antiferroelectric Operation,” in IEDM Tech. Dig., pp. 255-258,
    2011.
    [12] A. I. Khan, D. Bhowmik, P. Yu, S. J. Kim, X. Pan, R. Ramesh and S.
    Salahuddin, “Experimental evidence of ferroelectric negative
    capacitance in nanoscale heterostructures,’’ Appl. Phys. Lett., Vol. 99,
    113501, 2011.
    [13] C. W. Yeung, A. I. Khan, A. Sarker, S. Salahuddin, and C. Hu, “Low
    Power Negative Capacitance FETs for Future Quantum-Well Body
    Technology, ’’ in VLSI-TSA, pp. 179-180, 2013.
    [14] G. A. Salvatore, D. Bouvet, and A. M. Ionescu, “Demonstration of
    Subthrehold Swing Smaller Than 60mV/decade in Fe-FET with
    P(VDF-TrFE)/SiO2 Gate Stack,” in IEDM Tech. Dig., pp. 167-170,
    2008.
    [15] A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescu,
    ‘‘Metal-Ferroelectric-Metal-Oxide-Semiconductor Field Effect
    Transistor with Sub-60mV/decade Subthreshold Swing and Internal
    Voltage Amplification,’’ in IEDM Tech. Dig., pp. 395-398, 2010.
    [16] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U.
    Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple
    Binary ZrO2 and HfO 2 ,” Nano Lett., pp. 4318−4323, 2012

    55

    [17] J. Müller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Muller,
    D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M.
    Czernohorsky, K. Seidel, P. Kucher, R. Boschke, M. Trentzsch, K.
    Gebauer, U. Schroder, and T. Mikolajick,” Ferroelectricity in HfO2
    enables nonvolatile data storage in 28 nm HKMG, ” in VLSI Symp.
    Tech. Dig., p. 25, 2012.
    [18] M. H. Lee, S. T. Chang, T.-H. Wu, and W.-N. Tseng, “Driving
    Current Enhancement of Strained Ge (110) p-type Tunnel FETs and
    Anisotropic Effect,” IEEE Electron Device Letter, vol. 32, no. 10, pp.
    1355-1357, 2011.
    [19] K. Joen, W.-Y. Lop, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C.
    Park, C. S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J.
    King Liu, and C. Hu, “Si Tunnel Transistors with A Novel Silicided
    Source and 46mV/dec Swing,” VLSI Symp. Tech. Dig., pp. 121-122,
    2010.
    [20] C. Hu, D. Chou, P. Patel, and A. Bowonder, “Green transistor—A
    VDD scaling path for future low power ICs,” in Proc. Int. Symp.
    VLSI-TSA, Apr. 2008, pp. 14–15.
    [21] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel
    Field-Effect-Transistors with Epitaxially Grown Germanium on
    Silicon,” IEEE Trans. on Electron Device, vol. 60, no.7, pp.
    2423-2427, 2013.
    [22] S. J. Choi , J.W .Han, S. Kim, D. I1 Moon, M. Jang, and Y . K .
    Choi, ”High - Performance Polycrystalline Silicon TFT on the
    Structure of a Dopant-Segregated Schottky-Barrier Source/Drain,”
    in IEEE EDL,Vol. 31. pp. 228-230, 2010.

    56

    [23] B. Jaffe, W-R. Cook and H. Jaffe, “Piezoelectric Ceramics,’’
    Academic Press Inc., London. 1970.
    [24] P. Paruch, T. Giamarchi, T. Tybell, and J.-M. Triscone “Nanoscale
    studies of domain wall motion in epitaxial ferroelectric thin films,’’
    American Physical Society, APS March Meeting, March, pp. 21-25,
    (2005).
    [25] M . T. Escote, F. M. Pontes, E. R. Leite, E. Longo, R. F. Jardim ,
    “ High oxygen-pressure annealing effectson the ferroelectric and
    structural properties of PbZr 0.3 Ti 0.7 O 3 thin films,” JAP, Vol. 96, pp.
    2186-2191, 2004.
    [26] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang,
    “Evolution of phases and ferroelectric properties of thin Hf 0.5 Zr 0.5 O 2
    films according to the thickness and annealing temperature,” APL,
    102, 242905, 2013.
    [27] C. H. Cheng and A. Chin, “Low- Voltage Steep Turn-On pMOSFET
    Using Ferroelectric High-k Gate Dielectric ,” IEEE EDL, Vol. 35, pp.
    274-276, 2014.
    [28] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U.
    Schroeder, and T. Mikolajick, “Incipient Ferroelectricity in
    Al-Doped HfO2 Thin Films,” Adv. Funct. Mater., 22, 2412, 2012.
    [29] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger et al.,
    “Ferroelectricity in yttrium-doped hafnium oxide,” JAP, 110,
    114113, 2011.
    [30] T. Mitsui, An Introduction to the Physics of Ferroelectrics, Gordon
    and Breach Science Publishers: London, 1976.

    無法下載圖示 本全文未授權公開
    QR CODE