簡易檢索 / 詳目顯示

研究生: 薩欽
Sachin Ichake
論文名稱: Palladium Catalyzed Cascade C-H Functionalization and NBS Mediated Thiocyanation Strategies for the Synthesis of Biologically Relevant Heterocycles and PACs
Palladium Catalyzed Cascade C-H Functionalization and NBS Mediated Thiocyanation Strategies for the Synthesis of Biologically Relevant Heterocycles and PACs
指導教授: 姚清發
Yao, Ching-Fa
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 227
中文關鍵詞: 鈀催化C-H官能基5-羥基苯並呋喃衍生物苯醌末端炔烴分子內環C-H鍵烯基化乙酸銅異噁唑啉N-氧化物硫氰酸化N-硫代氰基琥珀酰胺異噻唑衍生物
英文關鍵詞: Palladium catalyzed, C-H functionalization, 5-Hydroxybenzofuran derivatives, Terminal alkyne, Intramolecular annulation, C-H bond alkenylation, copper acetate, Isoxazoline N-oxide, Thiocyanation, N-thiocyanosuccinamide, Isothiazole Derivatives
DOI URL: http://doi.org/10.6345/DIS.NTNU.DC.075.2018.B05
論文種類: 學術論文
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文敘述了兩個部分。Part Ι分成三個部分。A部分闡述了鈀催化級聯C-H官能基化學反應的概況。在這個部分簡介了鈀催化級聯反應包含C-H鍵官能化,末端炔烴的C-H鍵官能化反應和鈀催化的C-H鍵烯基化。B部分描述了利用鈀金屬催化串聯C-H鍵官能化/環化策略來合成5種羥基苯並呋喃衍生物。在這個部分通過鈀催化的C-C / C-O鍵反應成功合成出5個羥基苯並呋喃衍生物。此外我們也描述了苯醌作為反應物和氧化劑的雙重作用。在C部分,表示鈀催化的分子內環化/脫氰氫化C-H鍵烯基化來合成苯[b]三亞苯衍生物。在乙酸銅作為氧化劑下利用鈀進行催化反應,有效的將苯氧乙酰甲基縮合產物(2Z,2'Z)-3,3' - ([1,1'-聯苯] -2,2'-二基)二(2-苯基丙烯腈)轉化為苯並[b] 苯並菲-9-腈衍生物。
    第二部分分為兩個部分。A部分是描述異噁唑啉N-氧化物。此外,我們也研究了各種C-S鍵形成的反應,也描述了硫氰化反應和硫氰酸化試劑的合成應用。此外,也討論了異噻唑類化合物的合成和應用。B部分,描述了“N-溴代琥珀酰亞胺介導的環己烯稠合異噁唑啉N-氧化物的硫氰化反應這是一種有效的新穎異噻唑衍生物的方法”。 此方法涉及原位生成的用作硫氰酸化劑的N-硫代氰基琥珀酰胺。此外,這種含SCN的產物進一步用於合成新的環己酮環稠合的異噻唑衍生物。

    The content of this dissertation is divided into two parts. Part Ι is subdivided into three sections. Section A illustrates the overview on Palladium catalyzed cascade C-H functionalization reactions. This section also described a brief survey on Palladium catalyzed cascade reactions involving C-H bond functionalization, C-H bond functionalization reactions of terminal alkynes and Palladium catalyzed C-H bond alkenylation protocols. Section B describes “The study of palladium-catalyzed tandem C−H bond functionalization/cyclization strategy for the synthesis of 5-Hydroxybenzofuran Derivatives”. In this section, the synthesis of 5-Hydroxybenzofuran Derivatives was achieved via palladium-catalyzed C-C/C-O bond formation reactions. Additionally, we also described the dual role of benzoquinone as a reactant as well as the oxidant. Section C demonstrates the “Palladium-Catalyzed Intramolecular Annulation/ Decyanogenative C-H bond Alkenylation Strategy for the Synthesis of Benzo[b] triphenylene derivatives”. Here, easily accessible knoevenagel condensation product (2Z,2'Z)-3,3'-([1,1'-biphenyl]-2,2'-diyl) bis(2-phenylacrylonitrile) converted efficiently into benzo[b]triphenylene-9-carbonitrile derivatives under palladium catalysis in the presence of copper acetate as an oxidant.
    Part II is divided into two sections. Section A is about the Overview on Isoxazoline N-oxides. Further, we also studied various C-S bond formation reactions, also described thiocyanation reactions and thiocyanating reagents and their synthetic utility in this section. additionally, Isothiazoles: synthesis and applications were discussed. Section B demonstrates the “N-Bromosuccinimide-Mediated Thiocyanation of Cyclohexene-Fused Isoxazoline N-Oxides: An Efficient Approach Towards the Novel Isothiazole Derivatives”. Present strategy involves In-situ generated N-thiocyanosuccinamide utilized as a thiocyanation agent. Moreover, this SCN containing product was further utilized for the synthesis of novel cyclohexanone ring fused isothiazole derivatives.

    Abbreviations i Abstract v Part-I Section-A: Overview on Palladium catalyzed Cascade Reactions Involving C-H bond functionalization I.A.1. Introduction 1 I.A.2. Palladium-catalyzed cascade reactions involving C-H bond functionalization 3 I.A.3. C-H bond functionalization reactions of terminal alkynes 7 I.A.4. Palladium-catalyzed C-H bond alkenylation reactions 10 I.A.6. References 12 Section B: Palladium-Catalyzed Tandem C−H Functionalization/Cyclization Strategy for the Synthesis of 5 Hydroxybenzofuran Derivatives I.B.1. Introduction 16 I.B.2. Review of literature 17 I.B.3. Result and discussions 21 I.B.4. Conclusion 31 I.B.5. Experimental Section 31 I.B.6. References 41 Section C: Palladium-Catalyzed Intramolecular Annulation/Decyanogenative C-H bond Alkenylation Strategy for the Synthesis of Benzo[b]triphenylene derivatives I.C.1. Introduction 44 I.C.2. Review of literature 44 I.C.3. Result and discussions 48 I.C.4. Conclusion 53 I.C.5. Experimental Section 54 I.C.6. References 68 Part II Section A: Overview on Isoxazoline N-oxide and Thiocyanation Reactions II.A.1. Isoxazoline N-oxides 71 II.A.2. C-S bond formation reactions 74 II.A.3. Outline on Thiocyanation reactions and reagents 77 II.A.4. Isothiazoles: synthesis and applications 79 II.A.5. Recent protocols on Isoxazoline N-oxide from our group 83 II.A.6. References 85 Section B: N-Bromosuccinimide-Mediated Thiocyanation of Cyclohexene-Fused Isoxazoline N-Oxides: An Efficient Approach Towards the Novel Isothiazole Derivatives II.B.1. Introduction 90 II.B.2. Review of literature 91 II.B.3. Result and discussions 92 II.B.4. Conclusion 103 II.B.5. Experimental Section 104 II.B.6. References 117 X-ray Crystallographic Data 120 1H and 13C NMR Spectral Copies 132 List of Publications 227

    Part I Section A(I.A.5.)

    (1) (a) Godula, K.; Sames, D. SCIENCE 2006, 312, 68. (b) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. (c) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. (d) Gutekunst W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. (e) Yamaguchi, J.; Yamaguchi A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960. (f) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (g) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev., 2015, 115, 12138.
    (2) For recent reviews see: (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (b) Fagnou, K. Top. Curr. Chem. 2009, 292, 35. (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. (d) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (e) Sun, C. L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (f) Daugulis, O. Top. Curr. Chem. 2009, 292, 57. (g) Wasa, M.; Engle, K. M.; Yu, J.-Q. Isr. J. Chem. 2010, 50, 605. (h) Ackermann, L.; Potukuchi, H. K. Org. Biomol. Chem. 2010, 8, 4503. (i) Hirano, K.; Miura, M. Synlett. 2011, 294. (j) Herrmann, P.; Bach, T. Chem. Soc. Rev. 2011, 40, 2022. (k) Ackermann, L. Chem. Rev. 2011, 111, 1315. (l) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (m) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761. (n) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
    (3) Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544.
    (4) Chatt, J.; Davidson, J. M. J. Chem. Soc. 1965, 843.
    (5) (a) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879. (b) Guari, Y.; Sabo-Etienne, S.; Chaudret, B. Eur. J. Inorg. Chem. 1999, 1047. (c) Kakiuchi, F.; Murai, S. Top. Organomet. Chem. 1999, 3, 47. (d) Crabtree, R. H. J. Chem. Soc. Dalton Trans. 2001, 2437. (e) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (e) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (g) Rao W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028. (h) Kakiuchi F.; Chatani, N. Adv. Synth. Catal., 2003, 345, 1077.
    (6) (a) Lyons T. W.; Sanford, M. S. Chem. Rev., 2010, 110, 1147; (b) Dyker, G. Handbook of C−H Transformations: Applications in Organic Synthesis; Wiley-VCH: Weinheim, 2005. (c) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578. (d) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. (e) Zhao, X.; Dimitrijevic´, E.; Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466. (f) Gandeepan, P.; Parthasarathy, K.; Cheng, C.-H. J. Am. Chem. Soc. 2010, 132, 8569. (g) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (h) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
    (7) Maddaford, S. P.; Andersen, N. G.; Cristofoli, W. A.; Keay, B. A. J. Am. Chem. Soc. 1996, 118, 10766.
    (8) Bowie, A. L.; Trauner, D. J. Org. Chem. 2009, 74, 1581.
    (9) . (a) Tietze, L. F.; Beifuss, U. Angew. Chemie Int. Ed. 1993, 32, 131. (b) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chemie Int. Ed. 2006, 45, 7134. (c) Padwaa, A.; Bur, S. K. Tetrahedron 2007, 63, 5341. (d) Pellissier, H. Tetrahedron 2006, 62, 1619. (e) Catalytic Cascade Reactions; Xu, P.-F., Wang, W., Eds.; Wiley-VCH: Weinheim, 2013. (f) Domino Reactions in Organic Synthesis; Tietze, L. F., Brasche, G., Gericke, K. M., Eds.; Wiley-VCH: Weinheim, 2006. (g) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462. (h) Catalytic Cascade Reactions; Xu, P.-F., Wang, W., Eds.; Wiley-VCH: Weinheim, 2013. (i) Jones, A. C.; May, J. A.; Sarpong, R.; Stoltz, B. M. Angew. Chem., Int. Ed. 2014, 53, 2556. (j) Nicolaou, K. C.; Chen J. S. Chem. Soc. Rev. 2009, 38, 2993.
    (10) Robinson, R. J. Chem. Soc. Trans. 1917, 111, 762.
    (11) Sharma, U.; Naveen, T.; Maji, A.; Manna, S.; Maiti, D. Angew. Chem. Int. Ed. 2013, 52, 12669.
    (12) Wang, S.; Li, P.; Yu, L.; Wang, L. Org. Lett. 2011, 13, 5968.
    (13) Kuram, M. R.; Bhanuchandra, M.; Sahoo, A. K. Angew. Chem. Int. Ed. 2013, 52, 4607.
    (14) Catellani, M.; Motti, E.; Baratta, S. Org. Lett. 2001, 3, 3611.
    (15) K. Kamikawa, I. Takemoto, S. Takemoto, H. Matsuzaka, J. Org. Chem. 2007, 72, 7406.
    (16) (a) Stang, P. J.; Diederich, F. In Modern Acetylene Chemistry; Wiley-VCH: Weinheim, 1995. (b) Silvestri, F.; Marrocchi, A. Int. J. Mol. Sci. 2010, 11, 1471
    (17) Acetylene Chemistry: Chemistry, Biology and Material Science Diederich, F.; Stang, P. J.; Tykwinski, R. R. Eds.; Wiley-VCH, Weinheim, 2005.
    (18) (a) Cassar, L. J. Organomet. Chem. 1975, 93, 253. (b) Dieck, H. A.; Heck, F. R. J.
    Organomet. Chem. 1975, 93, 259. (c) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467. (d) Tykwinski, R. R. Angew. Chem. Int. Ed. 2003, 42, 1566.
    (19) (a) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874. (b) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084. (c) Doucet., H.; Hierso, J.-C. Angew. Chem., Int. Ed. 2007, 46, 834.
    (20) (a) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 112, 2740. (b) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39, 2632. (c) Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org. Lett. 2009, 11, 709.
    (21) Jie, X.; Shang, Y.; Hu, P.; Su, W. Angew. Chem. Int. Ed. 2013, 52, 3630.
    (22) Kim, S. H.; Park, S. H.; Chang, S. Tetrahedron 2012, 68, 5162.
    (23) Kim, S. H.; Yoon, J.; Chang, S. Org. Lett., 2011, 13, 1474.
    (24) Shibahara, F.; Dohke, Y.; Murai, T. J. Org. Chem. 2012, 77, 5381.
    (25) (a) Selvaraju, M.; Wang, Y.-L.; Sun, C.-M. Org. Chem. Front. 2017, 4, 1358. (b) Ackermann L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211. (c) Gorsline, B. J.; Wang, L.; Ren, P.; Carrow, B. P. J. Am. Chem. Soc. 2017, 139, 9605. (d) Han, S. J.; Kim, H. T.; Joo, J. M. J. Org. Chem., 2016, 81, 689. (e) García-Rubia, A.; Laga, E.; Cativiela, C.; Urriolabeitia, E. P.; mez-Arraya ́, R. G.; Carretero, J. C. J. Org. Chem. 2015, 80, 3321. (f) Liu, T.; Sun, X.; Wu, L. Adv. Synth. Catal. 2018, 360, 2005. (g) Gong, T.-J.; Xiao, B.; Liu, Z.-J.; Wan, J.; Xu, J.; Luo, D.-F.; Fu, Y.; Liu, L. Org. Lett. 2011, 13, 3235. (h) Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A. V. Org. Lett. 2012, 14, 728. 337. (i) Wang, H.-L.; Hu, R.-B.; Zhang, H.; Zhou, A.-X.; Yang, S.-D. Org. Lett. 2013, 15, 5302. (j) Liu, B.; Jiang, H.-Z.; Shi, B.-F. J. Org. Chem. 2014, 79, 1521. (k) Liu, W.; Li, Y.; Xu, B.; Kuang, C. Org. Lett. 2013, 15, 2342. (l) Yu, M.; Xie, Y.; Xie, C.; Zhang, Y. Org. Lett. 2012, 14, 2164. (m)
    (26) (a) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. (b) Heck, R. F. Acc. Chem. Res. 1979, 12, 146. (c) Kantam, M. L.; Srinivas, P.; Yadav, J.; Likhar, P. R.; Bhargava, S.; J. Org. Chem., 2009, 74, 4882. (d) Cui, X.; Li, J.; Zhang, Z.-P.; Fu, Y.; Liu, L.; Guo, Q.-X. J. Org. Chem., 2007, 72, 9342. (g) Nadri, S.; Rafiee, E.; Jamali, S.; Joshaghani, M. Synlett, 2015, 26, 619. (g) Chandrasekhar, S.; Narsihmulu, C.; Sultana, S. S.; Reddy, N. R. Org. Lett., 2002, 4, 4399. (h) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442. (i) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170.
    (27) Cruz, A. C. F.; Miller, N. D.; Willis, M. C. Org. Lett. 2007, 9, 4391.
    (28) Hughes, C. C.; Trauner, D. Tetrahedron, 2004, 60, 9675.
    (29) Agasti, S.; Sharma, U.; Naveen, T.; Maiti, D. Chem. Commun. 2015, 51, 5375.

    Part I Section B(I.B.6.)

    (1) (a) Dawood, K. M.; Benzofuran derivatives: A patent review. Pat. 2013; 23, 1133. (b) Khanam, H.; Shamsuzzaman, E. J. Med. Chem. 2015, 97, 483. (c) Hiremathad, A.; Patil, M. R.; Chethana, K. R.; Chand, K.; Santos, M. A.; Keri, R. S. RSC Adv. 2015, 5, 96809.
    (2) Wang, L.-Q.; Zhao, Y.-X.; Hu, J. M.; Jia, A.-Q.; Zhou, J. Helvetica Chimica Acta. 2008, 91, 159.
    (3) (a) Xiao, K.; Zhang, H. J.; Xuan, L. J.; Zhang, J.; Xu, Y. M.; Bai, D. L. Stilbeniods: chemistry and bioactivities. In Studies in Natural Products Chemistry; Rahman, A. U., Ed.; Elsevier: B.V., 2008; Vol.34 pp 453-478. (b) Liu, W.; Jiang, X.; Zhang, W.; Jiang, F.; Fu, L. Organic Chem. Curr. Res. 2016, 5, 1000164.
    (4) (a) Kapache, G. D. W. F. et al. Phytochemistry. 2009, 70, 216. (b) Dictionary of flavonoids; Buckingham. J., Ranjit, v., Munasinghe, N., Eds.; Taylor and Francis Group: Boca raton, FL, 2015.
    (5) Geiger, H.; Quinn, C. Biflavonoids. In The Flavonoids: Advances in research since 1980; Harborne, J. B., Ed.; Chapman and Hall: London, 1988; pp 99-124.
    (6) Chen, Y.; Wei, X.; Xie, H.; Deng, H. Journal of Natural Products. 2008, 71, 931.
    (7) Findlay, J. A.; Buthelezi, S.; Li, G.; Seveck, M. Journal of Natural Products. 1997, 60, 1215.
    (8) (a) Handbook of organopalladium chemistry for organic synthesis; Negishi, E., Ed.; Wiley and Sons: New York, 2002; 2 vols. (b) Palladium Reagents and Catalysts Innovations in Organic Synthesis; Tsuji, J., Ed.; Wiley and Sons: New York, 1995. (c) Palladium Reagents and Catalysts: New Perspectives for the 21st Century; Tsuji, J., Ed.; Wiley and Sons: Chichester, U.K., 2004.
    (9) (a) Walker, S. E.; Jordan-Hore, J. A.; Johnson, D. G.; Macgregor, S. A.; Lee A.-L. Angew. Chem. Int. Ed. 2014, 53, 13876. (b) Molina, M. T.; Navarro, C.; Moreno, A.; Csáky, A. G. Org. Lett. 2009, 11, 4938. (c) Gan, X.; Jiang, W.; Wang, W.; Hu, L. Org. Lett. 2009, 11, 589.
    (10) (a) Itahara, T. J. Org. Chem. 1985, 50, 5546. (b) Singh, P. K.; Rohtagi, B. K.; Khanna, R. N. Synth. Commun. 1992, 22, 987. (c) Rao, M. L. N.; Giri, S. RSC Adv. 2012, 2, 12739.
    (11) (a) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Bel, M. D.; Baran P. S. J. Am. Chem. Soc. 2011, 133, 3292. (b) Engler, T. A.; Reddy, J. P. J. Org. Chem. 1991, 56, 6491. (c) Demchuk, O. G.; Michal Pietrusiewicz, K. Synlett 2009, 7, 1149. (d) Lockner, J. W.; Dixon, D. D.; Risgaard, R.; Baran, P. S. Org. Lett. 2011, 13, 5628. (e) Shintani, R.; Duan, W.-L.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 5628. (f) Duan, W.-L.; Imazaki, Y.; Shintani, R.; Hayashi, T. Tetrahedron. 2007, 63, 8529.
    (12) Bonini, C.; Cristiani, G.; Funicello, M.; Viggiani, L. Synth. Commun. 2006, 36, 1983.
    (13) (a) Cheng, X.-M.; Liu, X.-W. J. Comb. Chem. 2007, 9, 906. (b) Mukhanova, T. I.; Alekseeva, L. M.; Granik, V. G. Khim. Geterotsikl. Soedin. 1990, 888.
    ( 4) (a) Bernatek, E. Acta Chem. Scand. 1952, 6, 160. (b) Bernatek, E.; Ledaal, T. Acta Chem. Scand. 1958, 12, 2053.
    ( 5) Wu, F.; Bai, R.; Gua, Y. Adv. Synth. Catal. 2016, 358, 2307.
    ( 6) Kim, I.; Kim, K.; Choi J. J. Org. Chem. 2009, 74, 8492.
    ( 7) Some selected publications: (a) Kotipalli, T.; Kavala, V.; Konala, A.; Janreddy, D.; Kuo, C. –W.; Yao, C. –F. Adv. Synth. Catal. 2016, 358, 2652. (b) Zanwar, M. R.; Kavala, V.; Gawande, S. D.; Kuo, C.-W.; Huang, W.-C.; Kuo, T.-S.; Huang, H.-N.; He, C.-H.; Yao, C.-F. J. Org. Chem. 2014, 79, 1842. (c) Raihan, M. J.; Rajawinslin, R. R.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; He, C.-H.; Huang, H.-N.; Yao C.-F. J. Org. Chem. 2013, 78, 8872. (d) Gawande, S. D.; Kavala, V.; Zanwar, M. R.; Kuo, C.-W.; Huang, W.-C.; Kuo, T.-S.; Huang, H.-N.; He, C.-H.; Yao C.-F. Adv. Synth. Catal. 2014, 356, 2599.
    ( 8) Kuo, C.-W.; Konala, A.; Lin, L.; Chiang, T.-T.; Huang, C.-Y; Yang, T.-H.; Kavala V.; Yao C.-F. Chem. Commun. 2016, 52, 7870.
    ( 9) Selected examples for synthesis of benzofuran: from halo substituted phenols and internal alkynes (a) Larock, R. C.; Yum, E. K.; Doty, M. J.; Sham, K. K. C. J. Org. Chem. 1995, 60, 3270. (b) Gill, G. S.; Grobelny, D. W.; Chaplin, J. H.; Flynn, B. L. J. Org. Chem. 2008, 73,1131. (c) Wang, R.; Mo, S.; Lu, Y.; Shen, Z. Adv. Synth. Catal. 2011, 353, 713. From phenols and internal alkynes (d) Kuram, M. R.; Bhanuchandra, M.; Sahoo A. K. Angew. Chem. Int. Ed. 2013, 52, 4607. (e) Zeng, W.; Wu, W.; Jiang, H.; Huang, L.; Sun, Y.; Chen, Z.; Li. X. Chem. Commun. 2013, 49, 6611. (f) Zhu, R.; Wei, J.; Shi, Z. Chem. Sci. 2013, 4, 3706.
    (20) Popp, B. V.; Stahl, S. S. Top Organomet Chem, 2006, 22, 149.
    (21) CCDC 1509374 (3c), CCDC 1511959 (5a) and CCDC 1509527 (5a’). See Supporting Information for further crystallographic data details
    (22) (a) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 9651. (b) Lee, J. T. D.; Zhao Y. Angew. Chem. Int. Ed. 2016, 55, 13872. (c) Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Rǘhter G. J. Am. Chem. Soc. 1997, 119, 69.

    Part I Section C(I.C.6.)

    (1) (a) ACREE, Jr. W. E.; TUCKER S. A. Polycyclic Aromatic Compounds 1991, 2, 75. (b) Harvey, R. G. Polycyclic Aromatic Hydrocarbons, Wiley-VCH, New York, 1997. (c) Watson, M. D.; Fechtenkötter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267. (d) Harvey, R. G. Current Organic Chemistry, 2004, 8, 303. (e) Murphy, A. R.; Frechet, J. M. ́ J. Chem. Rev. 2007, 107, 1066. (f) Narita, A.; Wang, X.-Y.; Feng, X.; Mullen, K. Chem. Soc. Rev. 2015, 44, 6616–6643. (g) Ye, Q.; Chi, C. Chem. Mater. 2014, 26, 4046.
    (2) (a) Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J.; Dodabalapur, A. Adv. Mater. 1997, 9, 36. (b) Takamiya, K.; Kunugi, Y.; Toyoshima, Y.; Otsubo, T. J. Am. Chem. Soc. 2005, 127, 3605. (b) Mitsuhashi, R.; Suzuki, Y.; Yamanari, Y.; Mitamura, H.; Kambe, T.; Ikeda, N.; Okamoto, H.; Fujiwara, A.; Yamaji, M.; Kawasaki, N.; Maniwa, Y.; Kubozono, Y. Nature 2010, 464, 76.
    (3) (a) Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Fattori, V.; Cocchi, M.; Cacialli, F.; Gigli, G.; Cingolani, R. Adv. Mater. 1999, 11, 1375. (b) Mazzeo, M.; Vitale, V.; Della Sala, F.; Anni, M.; Barballera, G.; Favaretto, L.; Sotgiu, G.; Cingolani, R.; Gigli, G. Adv. Mater. 2005, 17, 34.
    (4) (a) Lau, K.; Foster, J.; Williams, V. CHEM. COMMUN. 2003, 2172–2173. (b) Paquette, J. A.; Yardley, C. J.; Psutka, K. M.; Cochran, M. A.; Calderon, O.; Williams V. E.; Maly, K. E. Chem. Commun., 2012, 48, 8210–8212.
    (5) (a) Ronzani, F.; Costarramone, N.; Blanc, S.; Benabbou, A. K.; Bechec, M. L.; Pigot, T.; Oelgemoller, M.; Lacombe S. Journal of Catalysis 2013, 303, 164–174. (b) Cricq, P. S.; Pigot, T.; Nicole, L.; Sanchez, C.; Lacombe, S. Chem. Commun. 2009, 5281–5283. (c) Ronzani, F.; Arzoumanian, E.; Blanc, S.; Bordat, P.; Pigot, T.; Cugnet, C.; Oliveros, E.; Sarakha, M.; Richard, C.; Lacombe, S. Phys. Chem. Chem. Phys. 2013, 15, 17219-17232.
    (6) Pérez, D.; Peña, D.; Guitián, E. Eur. J. Org. Chem. 2013, 5981–6013
    (7) Fitzgerald, J. J.; Drysdale, N. E.; Olofson, R. A. J. Org. Chem. 1992, 57, 7122-7126.
    (8) (a) Smyth, N.; Engen, D. V.; Pascal, R. A. J. Org. Chem. 1990, 55, 1937-1940. (b) Diego, R.-L.; Peña, D.; Pérez, D.; Guitián, E. Org. Biomol. Chem. 2010, 8, 3386–3388
    (9) (a) Thiruvellore T. J.; Masilamani J.; Cheng, C.-H. J. Org. Chem. 2004, 69, 8445-8450. (b) Romero, C.; Peña, D.; Pérez, D.; Guitián, E. Chem. Eur. J. 2006, 12, 5677 – 5684
    (10) (a) Lau, K.; Foster, J.; Williams, V. Chem. Commun. 2003, 2172. (b) Paquette, J. A.; Yardley, C. J.; Psutka, K. M.; Cochran, M. A.; Calderon, O.; Williams, V. E.; Maly, K. E. Chem. Commun., 2012, 48, 8210.
    (11) Suzuki, N.; Fujita, T.; Amsharov, K. Y.; Ichikawa, J. Chem. Commun., 2016, 52, 12948-12951
    (12) For recent reviews see: (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. C-H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angew. Chem., Int. Ed. 2012, 51, 8960−9009. (b). Shilov, A. E.; Shul’pin, G. B. Activation of C-H bonds by metal complexes. Chem. Rev. 1997, 97, 2879. (c) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Q. Palladium Catalyzed Transformations of Alkyl C−H Bonds. Chem. Rev. 2017, 117, 8754. (d) Newton, C. G.; Wang, S. G.; Oliveira, C. C.; Cramer, N. Catalytic Enantioselective Transformations Involving C−H Bond Cleavage by Transition-Metal Complexes. Chem. Rev. 2017, 117, 8908. (e) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Transition-Metal-Catalyzed C−H Alkylation Using Alkenes. Chem. Rev. 2017, 117, 9333. (f) He, J.; Hamann, L. G.; Davies, H. M.; Beckwith, E. J. Nat Commun, 2015, 6, 5943. (g) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (h) Messaoudi, A.; Brion, J.‐D.; Alami, M. Eur. J. Org. Chem. 2010, 6495. (i) Godula, K.; Sames, D. Science 2006, 312, 67. (j) Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2000, 122, 6321.
    (13) (a) Kotipalli, T.; Kavala, V.; Konala, A.; Janreddy, D.; Kuo, C. –W.; Yao, C. –F. Adv. Synth. Catal. 2016, 358, 2652. (b) Zanwar, M. R.; Kavala, V.; Gawande, S. D.; Kuo, C.-W.; Huang, W.-C.; Kuo, T.-S.; Huang, H.-N.; He, C.-H.; Yao, C.-F. J. Org. Chem. 2014, 79, 1842. (c) Raihan, M. J.; Rajawinslin, R. R.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; He, C.-H.; Huang, H.-N.; Yao C.-F. J. Org. Chem. 2013, 78, 8872. (d) Gawande, S. D.; Kavala, V.; Zanwar, M. R.; Kuo, C.-W.; Huang, W.-C.; Kuo, T.-S.; Huang, H.-N.; He, C.-H.; Yao C.-F. Adv. Synth. Catal. 2014, 356, 2599. (e) Kuo, C.-W.; Konala, A.; Lin, L.; Chiang, T.-T.; Huang, C.-Y; Yang, T.-H.; Kavala V.; Yao C.-F. Chem. Commun. 2016, 52, 7870. (f) Ichake, S. S.; Konala, A.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. Org. Lett. 2017, 19, 54.

    Part II Section A(II.A.6.)

    (1) (a) Righi, P.; Marotta, E.; Landuzzi, A.; Rosini, G. J. Am. Chem. Soc. 1996, 118, 9446. (b) Shi, Z.; Tan, B.; Leong, W. W. Y.; Zeng, X.; Lu, M.; Zhong, G. Org. Lett. 12, 2010, 5402 (c) Smirnov, V. O.; Sidorenkov, A. S.; Khomutova, Y. A.; Ioffe S. L.; Tartakovsky, V. A. Eur. J. Org. Chem. 2009, 3066. (d) Kuster, G. J. T.; Steeghs, R. H. J.; Scheeren, H. W. Eur. J. Org. Chem. 2001, 553. (e) Kanemasa, S.; Yoshimiya, T; wada, E. Tetrahedron Lett. 1998, 39, 8869. (f) Righi, P.; Marotta E.; Rosini, G.; Chem. Eur. J. 1998, 4, 2501. (g) Mikhaylov, A. A.; Dilman, A. D.; Struchkova, M. I.; Khomutova, Y. A.; Korlyukov, A. A.; Ioffe, S. L.; Tartakovsky, V. A. Tetrahedron 2011, 67, 4584 (h) Jiang, H.; Elsner, P.; Jensen, K. L.; Falcicchio, A.; Marcos, V.; Jørgensen K. A. Angew. Chem. Int. Ed. 2009, 48, 6844 (i) Sommermann, T.; Kim, B. G.; Peters, E.-M; Linker, T. Chem. Commun., 2004, 2624; (j) Nishiuchi, M.; Sato, H.; Umemoto N.; Murakami, S. Chem. Lett. 2008, 37, 146. (k) Trost, B. M.; Li, L.; Guile, S. D. J. Am. Chem. Soc. 1992, (l) C.-Y. Zhu, X.-M. Deng, X.-L. Sun, J.-C. Zheng and Y. Tang, Chem. Commun. 2008, 738. (m) Kunetsky, R. A.; Dilman, A. D.; Ioffe, S. L.; Struchkova, M. I.; Strelenko, Y. A.; Tartakovsky, V. A. Org. Lett. 2003, 5, 4907. (n) Kano, T.; Yamamoto, A.; Song, S.; Maruoka, K. Chem. Commun., 2011, 47, 4358. (o) Zhu, C.-Y.; Sun, X.-L.; Deng, X.-M.; Zheng, J.-C.; Tang Y. Tetrahedron 2008, 64, 5583.
    (2) (a) Bernardi, F.; Csizmadia, I. G.; Mangini, A. Organic Sulfur Chemistry. Theoretical and Experimental Advances, Eds: Elsevier, Amsterdam, 1985, 19. (b) Block, E. Reactions of Organosulfur Compounds, Academic Press, New York, 1978; (c) Llauger, L.; He, H. Z.; Kim, J.; Aguirre, J.; Rosen, N.; Peters, U.; Davies, P.; Chiosis, G. J. Med. Chem. 2005, 48, 2892. (d) Pasquini, S.; Mugnaini, C.; Tintori, C.; Botta, M.; Trejos, A.; Arvela, R. K.; Larhed, M.; Witvrouw, M.; Michiels, M.; Christ, F.; Debyser, Z.; Corelli, F. J. Med. Chem. 2008, 51, 5125. (e) Gangjee, A.; Zeng, Y. B.; Talreja, T.; McGuire, J. J.; Kisliuk, R. L.; Queener, S. F. J. Med. Chem. 2007, 50, 3046. (f) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (g) Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, R.; De-Vries, P.; Leitza, S.; Reilly, E. B.; Okasinski, G. F.; Nielsen, E.; Fesik, S. W.; Von Geldern, T. W. J. Med. Chem. 2001, 44, 1202. (h) Nielsen, S. F.; Nielsen, E.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med. Chem. 2000, 43, 2217. (i) Cheng, Y.; Peng, Q.; Fan, W.; Li, P. J. Org. Chem. 2014, 79, 5812. (j) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou X. Org. Lett. 2011, 13, 454. (k) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481. (l) Rostami, A.; Rostami, A.; Ghaderi, A.
    J. Org. Chem. 2015, 80, 8694. (m) Liu, H.; Jiang, X. F. Chem. - Asian J. 2013, 8, 2546. (n) Desnoyer, A. N.;Love, J. A. Chem. Soc. Rev. 2017, 46, 197 (o) Shen, C.; Zhang, P. F.; Sun, Q.; Bai, S. Q.; Hor, T. S. A.; Liu, X. G. Chem. Soc. Rev.2015, 44, 291 (p) Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.;Akhmedov, N. G.; Petersen, J. L.; Shi, X. Angew. Chem., Int. Ed. 2014, 53, 4657.

    (3) (a) Guy, R. G. Syntheses and Preparative Applications of Thiocyanates. In The Chemistry of Cyanates and their Derivatives; Patai, S., Ed.; Wiley: Chichester, 1977; p 1003 (b) Nguyen, T.; Rubinstein, M.; Wakselman, C. J. Org. Chem. 1981, 46, 1938. (c) Zhang, Z. H.; Liebeskind, L. S. Org. Lett. 2006, 8, 4331. (d) Magnus, P. D. Tetrahedron 1977, 33, 2019. (e) Riemschneider, R. J. Am. Chem. Soc. 1956, 78, 844. (f) Lee, Y. T.; Choi, S. Y.; Chung, Y. K. Tetrahedron Lett. 2007, 48, 5673. (g) Linderoth, L.; Fristrup, P.; Hansen, M.; Melander, F.; Madsen, R.; Andresen, T. L.; Peters, G. H. J. Am. Chem. Soc. 2009, 131, 12193. (h) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu D.; Zhou, X. Org. Lett. 2011, 13, 454. (i) Sengupta, D.; Basu, B. Tetrahedron Lett. 2013, 54, 2277. (j) Billard, T.; Large S.; Langlois, B. R. Tetrahedron Lett. 1997, 38, 65. (k) Riemschneider, R. J. Am. Chem. Soc. 1956, 78, 844.
    (4) (a) Pham, A. T.; Ichiba, T.; Yoshida, W. Y.; Scheuer, P. J.; Uchida, T.; Tanaka, J.-I.; Higa, T. Tetrahedron Lett. 1991, 32, 4843. (b) Hill, H. A. O. In Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives; Newman, A. A., Ed.; Academic Press: London, 1975. (c) Patil, A. D.; Freyer, A. J.; Reichwein, R.; Carte, B.; Killmer, L. B.; Faucette, L.; Johnson, R. K.; Faulkner, D. J. Tetrahedron Lett. 1997, 38, 363. (d) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 15004.
    (5) (a) Zhang, H.; Wei, Q.; Wei, S.; Qu, J.; Wang B. Eur. J. Org. Chem. 2016, 2016, 3373. (b) Wang, C.; Wang, Z.; Wang, L.; Chen, Q.; He, M. Chin. J. Chem. 2016, 34, 1081. (c) Jiang, H.-F.; Yu, W.-T.; Tang, X.- D.; Li, J.-X.; Wu, W.-Q. J. Org. Chem. 2017, 82, 9312. (d) Sun, N.; Zhang, H.; Mo, W.; Hu, B.; Shen, Z.; Hu X. Synlett 2013, 24, 1443. (e) Beletskaya, I. P.; Sigeev, A. S.; Peregudov A. S.; Petrovskii, P. V. Mendeleev Commun., 2006, 16, 250. (f) Grant, M. S.; Snyder, H. R. J. Am. Chem. Soc. 1960, 82, 2742. (g) Toste, F. D.; De Stefano, V.; Still, I. W. J. Synth. Commun. 1995, 25, 1277. (h) Zhu, D.; Chang, D.; Shi, L. Chem. Commun., 2015, 51, 7180. (i)Nair, V.; George, T. G.; Nair, L. G.; Panicker, S. B. Tetrahedron Lett. 1999, 40, 1195. (j) Jiang, H.-F.; Yu, W.-T.; Tang, X.- D.; Li, J.-X.; Wu, W.-Q. J. Org. Chem. 2017, 82, 9312. (k) Memarian, H.-R.; Mohammadpoor, B.-I.; Nikoofar, K. Ultrason. Sonochem. 2008, 15, 456. (l) Wu, D.; Qiu, J.; Karmaker, P. G.; Yin, H.; Chen, F.-X. J. Org. Chem. 2018, 83, 1576.
    (6) (a) 1) (a) Lin, Y.-I.; Lang, S. A., Jr. J. Org. Chem. 1980, 45, 4857. (b) Vicini, P.; Geronikaki, M. I.; Bernadetta, B.; Poni, G.; Cabras, C. A.; La Colla, P. Bioorg. Med. Chem. 2003, 11, 4785. (c) Seeger, T. F.; Seymour, P. A.; Schmidt, A. W.; Zorn, S. H.; Shulz, D. W.; Lebel, L. A.; McLean, S.; Guanowsky, V.; Howard, H. R.; Lowe, J. A., III; Heym, J. J. Pharmacol. Exp. Ther. 1995, 275, 101. (d) Belanger, D. B.; Curran, P. J.; Hruza, A.; Voigt, J.; Meng, Z.; Mandal, A. K.; Siddiqui, M. A.; Basso, A. D.; Gray, K. Bioorg. Med. Chem. Lett. 2010, 20, 5170. (e) Kim, Y.; Tae, J.; Lee, K.; Rhim, H.; Choo, I. H.; Cho, H.; Park, W. K.; Keum, G.; Choo, H. Bioorg. Med. Chem. 2014, 22, 4587. (f) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications 3rd, Completely Revised and Enlarged Edition; Wiley, 2013.
    (7) (a) Adams, A.; Freeman, W. A.; Holland, A.; Hossack, D.; Inglis, J.; Parkinson, J.; Reading, H. W.; Rivett, K.; Slack, R.; Sutherland, R.; Wien, R. Nature 1960, 186, 221. (b) Machoń, Z.; Wieczorek, Z.; Zimecki, M. Polym. J. Pharmacol. 2001, 53, 377. (c) Abdel-Magid, A. F. ACS Med. Chem. Lett. 2015, 6, 1097. (c) Fisher, M. J.; Backer, R. T.; Barth, V. N.; Garbison, K. E.; Gruber, J. M.; Heinz, B. A.; Iyengar, S.; Hollinshead, S. P.; Kingston, A.; Kuklish, S. L.; Li, L.; Nisenbaum, E. S.; Peters, S. C.; Phebus, L.; Simmons, R. M. A.; van der Aar, E. Bioorg. Med. Chem. Lett. 2012, 22, 2514. (x)Slack, R.; Wooldridge, K. R. H. Adv. Heterocycl. Chem. 1965, 4, 107. (b) Davis, M. Adv. Heterocycl. Chem. 1972, 14, 43.
    (8) (a) Kuklish, S. L.; Backer, R. T.; Fisher, M. J.; Kempema, A. M.; Mauldin, S. C.; Merschaert, A. Tetrahedron Lett. 2015, 56, 2605. (b) Seo, B.; Kim, Y. G.; Lee, P. H. Org. Lett. 2016, 18, 5050. (c) Xu, F.; Chen, Y.; Fan, E.; Sun Z. Org. Lett. 2016, 18, 2777. (d) Shukla, G.; Srivastava, A.; Singh, M. S. Org. Lett. 2016, 18, 2451. (e) Krebs, H. D. Aust. J. Chem. 1989, 42, 1291. (f) Crenshaw, R. R.; Partyka, R. A. J. Heterocycl. Chem. 1970, 7, 871. (g) Paton, M. R. Chem. Soc. Rev. 1989, 18, 33. (h) Hamad Elgazwy, A.-S. S. Tetrahedron 2003, 59, 7445. (i) Greig, I. R.; Tozer, M. J.; Wright, P. T. Org. Lett. 2001, 3, 369. (j) Chen, Y.; Willis, M. C. Org. Lett. 2015, 17, 4786. (h) Devarie- Baez, N. O.; Xian, M. Org. Lett. 2010, 12, 752.
    (9) Raihan, M. J.; Kavala, V.; Habib, P. M.; Guan, Q.-Z.; Kuo, C.-W.; Yao, C.-F. J. Org. Chem. 2011, 76, 424.
    (10) (a) Raihan, M. J.; Kavala, V.; Guan, Q.-Z.; Kuo, C.-W.; Kataria, S.; Shishodia, S.; Janreddy, D.; Habib, P. M.; Yao, C.-F. Adv.Synth.Catal. 2012, 354, 2251. b) Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. Eur. J. Org. Chem. 2013, 5743.
    (11) (a) Raihan, M. J.; Rajawinslin, R. R.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; He, C.-H.; Huang, H. N.; Yao, C.-F. J. Org. Chem. 2013, 78, 8872. (b) Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. Tetrahedron 2014, 70, 7505.

    Part II Section B (II.B.6.)

    (1) (a) Guo, Z.-W.; Xie, J.-W.; Chen, C.; Zhu, W. D. Org. Biomol.Chem. 2012, 10, 8471. (b) Kano, T.; Yamamoto, A.; Song, S.; Maruoka, K. Chem. Commun. 2011, 47, 4358. (c) Mikhaylov, A. A.; Dilman, A. D.; Struchkova, M. I.; Khomutova, Y. A.; Korlyukov, A. A.; Ioffe, S. L.; Tartakovsky, V. A. Tetrahedron 2011, 67, 4584. (d) Zhong, C.; Gautam, L. N. S.; Petersen, J. L.; Akhmedov, N. G.; Shi, X. Chem.Eur. J. 2010, 16, 8605. (e) Jiang, H.; Elsner, P.; Jensen, K. L.; Falcicchio, A.; Marcos, V.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2009, 48, 6844. (f) Zhu, C.-Y.; Deng, X. M.; Sun, X. L.; Zheng, J. C.; Tang, Y. Chem. Commun. 2008, 738.
    (2) (a) Raihan, M. J.; Kavala, V.; Guan, Q.-Z.; Kuo, C.-W.; Kataria, S.; Shishodia, S.; Janreddy, D.; Habib, P. M.; Yao, C.-F. Adv.Synth.Catal. 2012, 354, 2251. (b) Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. Eur. J. Org. Chem. 2013, 5743. (c) Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. Tetrahedron 2014, 70, 7505. (d) Raihan, M. J.; Rajawinslin, R. R.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; He, C.-H.; Huang, H. N.; Yao, C.-F. J. Org. Chem. 2013, 78, 8872. (e) Raihan, M. J.; Kavala, V.; Habib, P. M.; Guan, Q.-Z.; Kuo, C.-W.; Yao, C.-F. J. Org. Chem. 2011, 76, 424.
    (3) (a) Sun, N.; Che, L.; Mo, W.; Hu, B.; Shen, Z.; Hu, X. Org. Biomol. Chem. 2015, 13, 691. (b) Kuhn, B. L.; Fortes, M. P.; Kaufman, T. S.; Silveira, C. Tetrahedron Lett. 2014, 55, 1648. (c) Potash, S.; Rozen, S. J. Fluorine Chem. 2014, 168, 173. (d) Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; Zhang, W. Eur. J. Med. Chem. 2014, 87, 306. (e) Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S.; Krishna, A. D. Tetrahedron Lett. 2007, 48, 2029. (f) He, H.-Y.; Faulkner, D. J. J. Org. Chem 1989, 54, 2511. (g) Saunders, J.; Williams, J. Prog.Med. Chem. 2003, 41, 195. (h) Lee, B.-H.; Lee, M. J.; Park, S.; Oh, D.-C.; Elsasser, S.; Chen, P.-C.; Gartner, C.; Dimova, N.; Hanna, J.; Gygi, S. P.; Wilson, S. M.; King, R. W.; Finley, D. Nature, 2010 , 467, 179-184; (i) Cui, X.-R.; Saito, R.; Kubo, T.; Kon, D.; Hirano, Y.; Saito, S. Chem. Pharm. Bull. 2011, 59, 302.
    (4) (a) Kuhn, B. L.; Fortes, M. P.; Kaufman, T. S.; Silveira, C. Tetrahedron Lett. 2014, 55, 1648. (b) Potash, S.; Rozen, S. J. Fluorine Chem. 2014, 168, 173. (c) Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; Rodriguez, W.; Camargo, P.A.; Sierra, C. A.; Soto, C.Y.; Cobo, J.; Nogueras, M. Tetrahedron Lett. 2011, 52, 2652.
    (5) (a) Prasad, J. V. N. V. Org. Lett. 2000, 2, 1069. (b) Beer, L.; Brusso, J. L.; Cordes, A. W.; Haddon, R. C.; Itkis, M. E.; Kirschbaum, K.; MacGregor, D. S.; Oakley, R. T.; Pinkerton, A. A.; Reed, W. J. Am. Chem. Soc., 2002, 124, 9498. (c) Khazaei, A.; Rahmati, S.; Nezhad, A. K.; Saednia, S. J. Fluorine Chem. 2012, 137, 123. (d) Amosova, S. V.; Penzik, M. V.; Potapov, V. A.; Albanov, A. I. Russ. J. Org. Chem. 2015, 51, 287. (e) Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S. Tetrahedron Lett. 2004, 45, 1291. (f) Akhlaghinia, B.; Pourali, A.-R.; Rahmani, M. Synth.Commun. 2012, 42, 1184. (g) Azadi, R.; Mokhtari, B.; Oghabi, H. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 1377. (h) Prasad, J. V. N. V.; Panapoulous, A.; Rubin, J. R. Tetrahedron Lett. 2000, 41, 4065.
    (6) (a) Palsuledesai, C. C.; Murru, S.; Sahoo, S. K.; Patel, B. K. Org. Lett. 2009, 11, 3382. (b) Yang, H.; Duan, X.-H.; Zhao, J.-F.; Guo, L.-N. Org. Lett. 2015, 17, 1998. (c) Fan, W.; Yang, Q.; Xu, F.; Li, P. J. J. Org. Chem. 2014, 79, 10588. (d) Liang, Z.; Wang, F.; Chen, P.; Liu, G. Org. Lett. 2015, 17, 2438. (e) Yadav, J. S.; Reddy, B. V. S.; Shubashree, S.; Sadashiv, K. Tetrahedron Lett. 2004, 45, 2951. (f) Dhar, L.; Yadav, S.; Rai, A. Tetrahedron Lett. 2009, 50, 640. (g) Badri, R.; Gorjizadeh, M. Synth.Commun. 2012, 42, 2058. (h) Meshram, H. M.; Thakur, P. B.; Ba Cuetos, B. M.; Lavandera, I.; Gotor, V. Green Chem. 2009, 11, 452. (k) Kumar, A.; Ahamd, P.; Maurya, R. A. Tetrahedron Lett. 2007, 48, 1399. (l) Jang, M.-Y.; Lin, Y.; Jonghe, S. D.; Gao, L.-J.; Vanderhoydonck, B.; Froeyen, M.; Rozenski, J.; Herman, J.; Louat, T.; Belle, K. V.; Waer, M.; Herdewijn, P. J.Med.Chem. 2011, 54, 655. (m) Koutsoumpli, G. E.; Dimaki, V. D.; Thireou, T. N.; Eliopoulos, E. E.; Labrou, N. E.; Varvounis, G. I.; Clonis, Y. D. J. Med. Chem. 2012, 55, 6802.
    (7) (a) Goswami, S.; Ghosh, K.; Mukherjee, R.; Adak, A. K.; Mahapatra, A. K. J. Heterocyclic Chem. 2001, 38, 173. (b) Wu, J.; Sun, W.; Sun, X.; Xia, H.-G. Green Chem. 2006, 8, 365. (c) Dinda, M.; Samanta, S.; Eringathodi, S.; Ghosh, P. K. RSC Adv. 2014, 4, 12252. (d) Wang, X.; Xu, D.; Miao, C.; Zhang, Q.; Sun, W. Org. Biomol. Chem. 2014, 12, 3108. (e) Wei, J.-F.; Chen, Z.-G.; Lei, W.; Zhang, L.-H.; Wang, M.-Z.; Shi, X.-Y.; Li, R.-T. Org. Lett. 2009, 11, 4216.
    (8) (a) Wang, W.-X.; Zhang, Q.-Z.; Zhang, T.-Q.; Li, Z.-S.; Zhang, W.; Yu, W. Adv. Synth. Catal. 2015, 357, 221. (b) Pereira, R.; Otth, E.; Cvengro, J. Eur. J. Org. Chem. 2015, 1674.
    (9) (a) Wang, L.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Eur. J. 2008, 14, 10722. (b) Alanthadka, A.: Maheswari, C. U. Adv.Synth.Catal. 2015, 357, 1199. (c) Si, W.; Lu, S.; Asao, N.; Bao, M.; Yamamoto, Y.; Jin, T. Chem.Commun. 2014, 50, 15730. (d) Bathula, S. R.; Reddy, M. P.; Viswanadham, K. K. D. R.; Sathyanarayana, P.; Reddy, M. S. Eur. J. Org. Chem. 2013, 4552.
    (10) (a) Firouzabadi, H.; Iranpoor, N.; Garzan, A.; Shaterian, H. R.; Ebrahimzadeh, F. Eur. J. Org. Chem. 2005, 416. (b) Mokhtari, B.; Azadi, R.; Nezhad, S. R. Tetrahedron Lett. 2009, 50, 6588. (c) Reddy, B. V. S.; Reddy, S. M. S.; Madan, C. Tetrahedron Lett. 2011, 52, 1432. (d) Ashby; M. T.; Halikhedkar, A. J. Am. Chem. Soc. 2004, 126, 10216. (e) Toste, F. D.; Stefano, V. D.; Still, I. W. J. Synth. Commun. 1995, 25, 1277. (f) Ashby, M. T.; Halikhedkar, A.; Carlson, A. C.; Scott, M. J.; Beal, J. L. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 1369.
    (11) (a) Rajawinslin, R. R.; Gawande, S. D.; Kavala, V.; Huang, Y.-H.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. RSC Adv. 2014, 4, 37806. (b) Rajawinslin, R. R.; Ichake, S. S.; Kavala, V.; Gawande, S. D.; Huang, Y.-H.; Kuo, C.-W.; Kuo, T.-S.; Yao, C.-F. RSC Adv. 2015, 5, 52141.
    (12) Regiec, A.; Machon, Z.; Miedzybrodzki, R.; Szymaniec, S. Arch. Pharm. Chem. Life Sci. 2006, 339, 401.
    (13) Sattar, A.; Elgazwy, H. Tetrahedron 2003, 59, 7445.
    (14) Aissaoui, H.; Koberstein, R.; Zumbrunn, J.; Gatfield, B.; Roch, C.; Jenck, F.; Treiber, A.; Boss, C. Bioorg. Med. Chem. Lett. 2008, 18, 5729.
    (15) CCDC numbers 1412637 (10a), 1412886 (1b) and 1412254 (1c) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    無法下載圖示 本全文未授權公開
    QR CODE