簡易檢索 / 詳目顯示

研究生: 陳文琛
論文名稱: 次單層鈷在鍺(111)表面上隨溫度變化之研究
Effect of submonolayer Co on Ge(111) surfaces at different temperature
指導教授: 傅祖怡
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 45
中文關鍵詞: 次單層鈷鍺(111)
英文關鍵詞: submonolayer Co, Ge(111)
論文種類: 學術論文
相關次數: 點閱:169下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是研究微量的Co 在Ge(111)上隨溫度變化。室溫下Co 就會與Ge 發生化合,而且隨溫度增高會出現各種不同現象,所以我們利用掃描穿隧顯微鏡去觀察實數空間下影像的變化。
    加熱溫度400K∼965K 後,降回室溫去觀察,在不同的熱處理過程,影像出現一些特徵,對於這些明顯的特徵給予命名。除此之外,我們儘可能去分辨出特徵圖像的結構。
    次亮點、小亮點則在每個溫度範圍皆存在,而六角形的小黑洞、具週
    期性的島、黑線,分別在500K、700K、965K 接續出現,配合STM圖像的統計分析及相關論文,我們猜測次亮點為Co 堆積表面的三維島、小亮點為雜質,另外在不同溫度下出現的各種特徵,我們猜測六角形的小黑洞為Co5Ge7、週期性的島為錯位堆疊、黑線為表面上的Adatom 鍵結形成的Dimer-row。

    2
    This thesis is a study about that effect of submonolayer Co on Ge(111)at different temperature. The Co and the Ge substrate will react to form Co-Ge compounds at room temperature. We observe many phenomena in real space by STM.
    The sample temperature varies from 400K to 965K, then cooled
    down to room temperature. The thermal effects are investigated from STM images. We find different characteristics in different heating processes, and try to distinguish them as possible as we can.
    STM images of the characteristics are called the meta-bright pot, the small bright pot, the hexagonal dark-pot, the periodic island and the dark-line. The first two have found in the STM images in all heating processes. The others appear at 500K, 700K, 965K, separately. Base on our experiments and related references, we infer that image of the meta-bright pot is similar to a Co 3-D island, the image of the small bright pot can be due to an impurity, the image of the hexagonal dark pot is an evidence of the formation of Co5Ge7, the image of the periodic island may be formed from a mismatch between Co and Ge lattice, and the dark-line image indicates a dimer-row occurs.

    第一章緒論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 第二章實驗原理及實驗儀器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 2.1 實驗原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 2.1.1 穿隧效應⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 2.1.2 侷域電子態密度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 2.2 實驗儀器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 2.2.1 幫浦系統⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 2.2.2 真空壓力計⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 2.2.3 殘氣分析儀⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 2.2.4 離子槍系統⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 2.2.5 製針裝置⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 2.2.6 鍍源系統⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 2.2.7 表面結構探測儀器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 第三章實驗步驟⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 3.1 實驗流程圖⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 3.2 前置作業⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 2 3.2.1 探針的製備⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 3.2.2 超高真空環境⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15 3.3 樣品選擇及基底的處理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17 3.3.1 Ge(111)表面2×8 的重構⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17 3.3.2 Ge(111)樣品的準備⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19 3.4 蒸鍍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 3.5 表面儀器探測⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 3.6 實驗室的小插曲⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 第四章實驗結果與討論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯23 4.1 室溫下Co 鍍量多寡吸附在Ge(111)的變化⋯⋯⋯⋯⋯⋯⋯23 4.2 次單層Co 在Ge(111)隨溫度變化的研究⋯⋯⋯⋯⋯⋯⋯⋯25 4.2.1 次亮點⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯27 4.2.2 六角形的小黑洞⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯28 4.2.3 特別的IC phase的島⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31 4.2.4 黑線分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36 4.2.5 在fill-state 圖像中的小亮點⋯⋯⋯⋯⋯⋯⋯⋯⋯40 第五章結論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43 參考文獻⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯45

    [1] 奈米科學網:http://nano.nchc.gov.tw
    [2] M. Gruyters, Surf. Sci. 515(2002)53
    [3] A.V. Melechko, J. Braun, H.H. Weitering,and E.W. Plummer,
    Phy. Rev. B 61 3 (2000) 2235
    [4] Marika Schleberger, Surf. Sci. 445(2000)71
    [5] New Scientist,4 September,1986
    [6] J.S. Tsay, Y.D. Yao, K.C.Wang, W.C. Cheng, C.S. Yang , Surf.
    Sci. 507-510 (2002) 498
    [7] J.S. Tsay, Y.D. Yao, C.S. Yang, W.C. Cheng, T.K. Tseng,
    K.C.Wang, Surf. Sci. 513 (2002) 93
    [8]K. Takayanagi, Y. Tanishiro, S. Takahashi, and M.
    Takahashi, Surf. Sci. 164(1985)367
    [9] J.A. Kubby, J.J. Boland, Surf. Sci. Report 26(1996)61
    [10] C. Julian Chen ,“Introduction to Scanning Tunneling
    Microscopy”(1993)
    [11] D.J. Spence, S.P. Tear, Surf. Sci. 398(1998)91
    [12] M. Gothelid, T.M. Grehk, M. Hammar, U.O. Karlsson, S.A.
    Flodstrom, Surf. Sci. 328(1995)80
    [13] 呂登復,“實用真空技術”, 新竹黎明出書局。
    [14] “真空技術與應用”, 行政院國家科學委員會精密儀器發展中

    [15]林毓瓊, 國立台灣師範大學碩士論文:掃描穿隧顯微儀電壓脈
    衝誘發CO 解離研究(2002)
    [16]陳宿惠, 國立台灣師範大學碩士論文:銀–鈷薄膜在鉑(111)表
    面的磁性探討(2000)
    [17]“表面分析儀器”, 行政國家科學委員會精密儀器發展中心G.A.
    Smith, L. Luo, Shin Hashimoto, and W.M. Gibson, J. Vac. Sci.
    Technoi.A 7(3), May/jun (1989)1475
    [18]Instruments for surface science, Omicron
    [19] Noboru Takeuchi, A. Selloni,and E. Tosatti, phys. Rev.
    Let.69 4 (1992)648
    [20] Geunseop Lee, H. Mai, Hya Chizhov, R.F. Willis,J. Vac. Sci.Technol. A16(3), May/jun(1998)1006 46
    [21] R.S. Becker, J. A. Golovchenko,and B.S. Swartzentruber,
    Phys. Rev. Let. 54 25 (1985)2678
    [22] W.B. Jian, W.B. Su, C.S. Chang,and T.T. Tsong, Phys. Rev.Let. Vol90 Number19 16 May (2003)
    [23] Charles Kittel,“Introduction to Solid State
    Physics”,Wiley
    [24] L.Jurczyszyn, J. Ortega, R. Perez, F. Flores, Surf. Sci.482-485(2001)1350
    [25] L.Pasquali, S.D Addato, L. Tagliavini, A.M. Prandini, S.
    Nannarone, Surf. Sci. 377-379(1997)534
    [26] R.S. Becker, B.S. Swartzentruber, J.S. Vickers,and T.
    Klitsner, Phys. Rev. B 39 3 (1989)1633
    [27] M. Gothelid, T.M. Grehk, M. Hammar, U.o. Karlsson, S.A.
    Flodstrom, Surf. Sci. 328(1995)80
    [28] Geunseop Lee, H. Mai, Hya Chizhov, R.F. Willis, Surf.
    Sci.463(2000)55
    [29] Geunseop Lee, H. Mai, Hya Chizhov, R.F. Willis, App. Surf.Sci.166(2000)295
    [30] Andrew J. Mayne, Franck Rose, Gerald Dujardin, Surf.
    Sci.523(2003)157

    QR CODE