簡易檢索 / 詳目顯示

研究生: 謝曜光
Hsieh, Yao-Kuang
論文名稱: 發展慣性感測器監控跑步下肢勁度的量測方法
Developing measurement method of lower extremity stiffness during running using inertial measurement units
指導教授: 相子元
Shiang, Tzyy-Yuang
口試委員: 相子元
Shiang, Tzyy-Yuang
王令儀
Wang, Li-I
陳韋翰
Chen, Wei-Han
口試日期: 2024/06/13
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 48
中文關鍵詞: 穿戴式裝置跑步經濟性長跑運動表現
英文關鍵詞: wearable device, running economy, distance running performance
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401053
論文種類: 學術論文
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言:下肢勁度對於長距離跑步運動而言是一項重要的生物力學參數。過程中跑者可以透過調整跑姿及步態來改變下肢勁度,若能保持較高的下肢勁度,有利於減少能量消耗。然而目前可穿戴式裝置所量測的跑步力學參數多數無法反映跑步效率。目的:本研究欲透過慣性感測器發展評估跑步下肢勁度的量測方法。方法:招募 20 名業餘跑者,於力板上以固定速度慢跑,並在跑者身上黏貼光點及配戴一顆慣性感測器於骶骨進行資料收集。兩儀器計算結果以皮爾森績差相關檢驗,並以配對t檢定比較差異,後續計算不同速度下的誤差及建立線性迴歸方程式修正偏差。結果:兩儀器間所有參數皆達顯著高度相關,觸地時間 (contact time, CT) r= .908;垂直地面反作用力峰值 (vertical ground reaction force peak, vGRF peak) r= .953;垂直位移 (Δy) r= .814;腿部壓縮量 (ΔL) r= .804;垂直勁度 (vertical stiffness, Kvert) r= .738;腿部勁度 (leg stiffness, Kleg) r= .732。均方根誤差顯示出小的誤差CT = .016 sec;vGRF peak = 88.960 N;Δy = .006 m;ΔL = .014 m,Kvert = 2.988 N/m;Kleg = 1.312 N/m。並且透過布萊特奧特曼圖發現CT (bias= -.042 sec)、Δy (bias= -.001 m) 及ΔL (bias= -.028 m) 有低估的情形,而vGRF peak (bias= 36.408 N)、Kvert (bias= 1.262 N/m) 及Kleg (bias= 2.845 N/m) 則呈現高估。透過迴歸方程式修正後,CT (bias= 0 sec)、vGRF prak (bias= .071 N)、Δy (bias= 0 m)、ΔL (bias= .001 m)、Kvert (bias= -.083 N/m) 及Kleg (bias= -.022 N/m)。結論:本次研究發現IMU量測結果與實驗室儀器有相似之趨勢,或許可以做為室外量測的替代工具,提供更符合真實情境及豐富的資訊給跑者及教練,作為調整跑步策略及訓練安排的依據。

    Background: Lower extremity stiffness is crucial in long-distance running, impacting biomechanical efficiency. Runners adjust posture and gait to optimize stiffness, reducing energy consumption. However, current wearable devices often inadequately capture these biomechanical parameters, limiting accurate assessment of running efficiency. Objective: This study aims to develop a method for evaluating lower extremity stiffness during running using inertial measurement units (IMU). Method: Twenty amateur runners jogged at fixed speeds on a force plate with reflective markers and an IMU (sacrum) for data collection. Pearson correlation coefficients assessed relationships between both instruments. Paired t-tests compared differences, errors were calculated across speeds, and linear regression equations corrected biases. Result: All parameters between the two instruments showed significant high correlations: contact time (CT) r= .908; vertical ground reaction force peak (vGRF peak) r= .953; vertical displacement (Δy) r= .814; leg compression (ΔL) r= .804; vertical stiffness (Kvert) r= .738; leg stiffness (Kleg) r= .732. Root mean square errors indicated small discrepancies: CT = .016 sec; vGRF peak = 88.960 N; Δy = .006 m; ΔL = .014 m; Kvert = 2.988 N/m; Kleg = 1.312 N/m. Bland-Altman plots revealed underestimations in CT (bias= -.042 sec), Δy (bias= -.001 m), and ΔL (bias= -.028 m), while vGRF peak (bias= 36.408 N), Kvert (bias= 1.262 N/m), and Kleg (bias= 2.845 N/m) showed overestimations. Following regression equation corrections, biases were adjusted for CT (bias= 0 sec), vGRF peak (bias= .071 N), Δy (bias= 0 m), ΔL (bias= .001 m), Kvert (bias= -.083 N/m), and Kleg (bias= -.022 N/m). Conclusion: This study found that lower extremity stiffness indicators measured by IMU closely match laboratory results. IMU could thus serve as alternative tools for outdoor measurements, providing valuable data for adjusting running strategies and training plans.

    中文摘要i 英文摘要ii 目 次iii 表 次v 圖 次vi 第壹章 緒論1 第一節 研究背景1 第二節 研究問題2 第三節 研究目的2 第四節 研究假設3 第五節 研究範圍與限制3 第六節 研究之重要性3 第貳章 文獻探討4 第一節 評估跑者跑步效率的黃金指標4 第二節 下肢勁度對長距離跑步的重要性7 第三節 過往監控跑步經濟性及下肢勁度的不便性12 第四節 慣性感測器量測生物力學參數之可靠性14 第五節 文獻探討總結15 第參章 研究方法16 第一節 實驗參與者16 第二節 實驗設備17 第三節 實驗流程18 第四節 資料處理20 第五節 統計分析22 第肆章 研究結果23 第一節 慣性感測器與實驗室儀器量測生物力學參數之相關性23 第二節 慣性感測器量測生物力學參數之誤差25 第伍章 研究討論31 第一節 慣性感測器與實驗室儀器量測生物力學參數之相關性31 第二節 不同儀器量測跑步生物力學參數之落差32 第三節 線性迴歸方程式修正IMU量測之誤差34 第四節 單一慣性感測器作為室外量測的替代方案35 第陸章 結論37 參考文獻38 附錄一 受試者同意書及實驗須知48

    Arampatzis, A., Brüggemann, G. P., & Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics, 32(12), 1349-1353. https://doi.org/10.1016/s0021-9290(99)00133-5
    Barnes, K. R., Mcguigan, M. R., & Kilding, A. E. (2014). Lower-body determinants of running economy in male and female distance runners. The Journal of Strength and Conditioning Research, 28(5), 1289-1297. https://doi.org/10.1519/JSC.0000000000000267
    Bouchard, C., Dionne, F. T., Simoneau, J. A., & Boulay, M. R. (1992). Genetics of aerobic and anaerobic performances. Exercise and Sport Sciences Reviews, 20(1), 27-58.
    Bouchard, C., Leon, A. S., Rao, D. C., Skinner, J. S., Wilmore, J. H., & Gagnon, J. (1995). The HERITAGE family study. Aims, design, and measurement protocol. Medicine and Science in Sports and Exercise, 27(5), 721-729.
    Brughelli, M., & Cronin, J. (2008). Influence of running velocity on vertical, leg and joint stiffness: modelling and recommendations for future research. Sports Medicine, 38, 647-657. https://doi.org/10.2165/00007256-200838080-00003
    Butler, R. J., Crowell, H. P., & Davis, I. M. (2003). Lower extremity stiffness: Implications for performance and injury. Clinical Biomechanics, 18(6), 511-517. https://doi.org/10.1016/s0268-0033(03)00071-8
    Chambon, N., Delattre, N., Guéguen, N., Berton, E., & Rao, G. (2015). Shoe drop has opposite influence on running pattern when running overground or on a treadmill. European Journal of Applied Physiology, 115, 911-918. https://doi.org/10.1007/s00421-014-3072-x
    Chan, Z. Y., Zhang, J. H., Ferber, R., Shum, G., & Cheung, R. T. (2020). The effects of midfoot strike gait retraining on impact loading and joint stiffness. Physical Therapy in Sport, 42, 139-145. https://doi.org/10.1016/j.ptsp.2020.01.011
    Conley, D. L., & Krahenbuhl, G. S. (1980). Running economy and distance running performance of highly trained athletes. Medicine and Science in Sports and Exercise, 12(5), 357–360.
    Costill, D. L., Thomason, H. A. R. R. Y., & Roberts, E. R. I. C. (1973). Fractional utilization of the aerobic capacity during distance running. Medicine and Science in Sports, 5(4), 248-252.
    Dalleau, G., Belli, A., Bourdin, M., & Lacour, J. R. (1998). The spring-mass model and the energy cost of treadmill running. European Journal of Applied Physiology and Occupational Physiology, 77, 257-263. https://doi.org/10.1007/s004210050330
    Dalleau, G., Belli, A., Viale, F., Lacour, J. R., & Bourdin, M. (2004). A simple method for field measurements of leg stiffness in hopping. International Journal of Sports Medicine, 25(03), 170-176. https://doi.org/10.1055/s-2003-45252
    Daniels, J. T. (1985). A physiologist's view of running economy. Medicine and Science in Sports and Exercise, 17(3), 332-338.
    Day, E. M., Alcantara, R. S., McGeehan, M. A., Grabowski, A. M., & Hahn, M. E. (2021). Low-pass filter cutoff frequency affects sacral-mounted inertial measurement unit estimations of peak vertical ground reaction force and contact time during treadmill running. Journal of Biomechanics, 119, 110323. https://doi.org/10.1016/j.jbiomech.2021.110323
    De Ruiter, C. J., Verdijk, P. W., Werker, W., Zuidema, M. J., & de Haan, A. (2014). Stride frequency in relation to oxygen consumption in experienced and novice runners. European Journal of Sport Science, 14(3), 251-258. https://doi.org/10.1080/17461391.2013.783627
    Edwards, W. B., Derrick, T. R., & Hamill, J. (2012). Musculoskeletal attenuation of impact shock in response to knee angle manipulation. Journal of Applied Biomechanics, 28(5), 502-510. https://doi.org/10.1123/jab.28.5.502
    Ernesto, C., Martins da Silva, F., Pereira, L. A., & De Melo, G. F. (2015). Cross Validation of Different Equations to Predict Aerobic Fitness by the Shuttle Run 20 Meters Test in Brazilian Students. Journal of Exercise Physiology Online, 18(1).
    Falbriard, M., Meyer, F., Mariani, B., Millet, G. P., & Aminian, K. (2018). Accurate estimation of running temporal parameters using foot-worn inertial sensors. Frontiers in Physiology, 610. https://doi.org/10.3389/fphys.2018.00610
    Farley, C. T., & Morgenroth, D. C. (1999). Leg stiffness primarily depends on ankle stiffness during human hopping. Journal of Biomechanics, 32(3), 267-273. https://doi.org/10.1016/s0021-9290(98)00170-5
    Farley, C. T., Houdijk, H. H., Van Strien, C., & Louie, M. (1998). Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. Journal of Applied Physiology, 85(3), 1044-1055. https://doi.org/10.1152/jappl.1998.85.3.1044
    Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., & Forrester, S. E. (2017). Running technique is an important component of running economy and performance. Medicine and Science in Sports and Exercise, 49(7), 1412. https://doi.org/10.1249/MSS.0000000000001245
    Foster, C., & Lucia, A. (2007). Running economy: the forgotten factor in elite performance. Sports Medicine, 37, 316-319. https://doi.org/10.2165/00007256-200737040-00011
    Fuller, J. T., Thewlis, D., Tsiros, M. D., Brown, N. A., & Buckley, J. D. (2017). Six-week transition to minimalist shoes improves running economy and time-trial performance. Journal of Science and Medicine in Sport, 20(12), 1117-1122. https://doi.org/10.1016/j.jsams.2017.04.013
    Godfrey, A., & Stuart, S. (Eds.). (2021). Digital Health: Exploring Use and Integration of Wearables. Academic Press.
    Gurchiek, R. D., McGinnis, R. S., Needle, A. R., McBride, J. M., & van Werkhoven, H. (2017). The use of a single inertial sensor to estimate 3-dimensional ground reaction force during accelerative running tasks. Journal of Biomechanics, 61, 263-268. https://doi.org/10.1016/j.jbiomech.2017.07.035
    Halvorsen, K., Eriksson, M., & Gullstrand, L. (2012). Acute effects of reducing vertical displacement and step frequency on running economy. The Journal of Strength and Conditioning Research, 26(8), 2065-2070. https://doi.org/10.1519/JSC.0b013e318239f87f
    Hannigan, J. J., & Pollard, C. D. (2020). Differences in running biomechanics between a maximal, traditional, and minimal running shoe. Journal of Science and Medicine in Sport, 23(1), 15-19. https://doi.org/10.1016/j.jsams.2019.08.008
    Heise, G. D., & Martin, P. E. (1998). " Leg spring" characteristics and the aerobic demand of running. Medicine and Science in Sports and Exercise, 30(5), 750-754. https://doi.org/10.1097/00005768-199805000-00017
    Higginson, B. K. (2009). Methods of running gait analysis. Current Sports Medicine Report, 8(3), 136–141. https://doi.org/10.1249/JSR.0b013e3181a6187a
    Hunter, I., & Smith, G. A. (2007). Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. European Journal of Applied Physiology, 100, 653-661. https://doi.org/10.1007/s00421-007-0456-1
    Jakobsen, L. S., Madeleine, P., Pavailler, S., Lefebvre, F., & Giandolini, M. (2022). The effects of unstable surface conditions on lower limb biomechanical parameters during running. Journal of Biomechanics, 141, 111214. https://doi.org/10.1016/j.jbiomech.2022.111214
    Karatsidis, A., Bellusci, G., Schepers, H. M., De Zee, M., Andersen, M. S., & Veltink, P. H. (2016). Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors, 17(1), 75. https://doi.org/10.3390/s17010075
    Kerdok, A. E., Biewener, A. A., McMahon, T. A., Weyand, P. G., & Herr, H. M. (2002). Energetics and mechanics of human running on surfaces of different stiffnesses. Journal of Applied Physiology, 92(2), 469–478. https://doi.org/10.1152/japplphysiol.01164.2000
    Kram, R., & Taylor, C. R. (1990). Energetics of running: a new perspective. Nature, 346(6281), 265-267. https://doi.org/10.1038/346265a0
    Kuitunen, S., Komi, P. V., & Kyröläinen, H. (2002). Knee and ankle joint stiffness in sprint running. Medicine and Science in Sports and Exercise, 34(1), 166-173. https://doi.org/10.1097/00005768-200201000-00025
    Kwon, S. B., Ahn, J. W., Lee, S. M., Lee, J., Lee, D., Hong, J., ... & Yoon, H. J. (2019). Estimating maximal oxygen uptake from daily activity data measured by a watch-type fitness tracker: cross-sectional study. JMIR mHealth and uHealth, 7(6), e13327. https://doi.org/10.2196/13327
    Latash, M. L., & Zatsiorsky, V. M. (1993). Joint stiffness: Myth or reality?. Human Movement Science, 12(6), 653-692. https://doi.org/10.1016/0167-9457(93)90010-M
    Lee, J. B., Mellifont, R. B., & Burkett, B. J. (2010). The use of a single inertial sensor to identify stride, step, and stance durations of running gait. Journal of Science and Medicine in Sport, 13(2), 270-273. https://doi.org/10.1016/j.jsams.2009.01.005
    Lee, J. B., Sutter, K. J., Askew, C. D., & Burkett, B. J. (2010). Identifying symmetry in running gait using a single inertial sensor. Journal of Science and Medicine in Sport, 13(5), 559-563. https://doi.org/10.1016/j.jsams.2009.08.004
    Lin, B. S., Lee, I. J., Fahn, C. S., Lee, Y. F., Chou, W. J., & Wu, M. L. (2021). Depth-camera based energy expenditure estimation system for physical activity using posture classification algorithm. Sensors, 21(12), 4216. https://doi.org/10.3390/s21124216
    Liu, B., Wu, J., Shi, Q., Hao, F., Xiao, W., Yu, J., ... & Ren, Z. (2022). Running economy and lower extremity stiffness in endurance runners: A systematic review and meta-analysis. Frontiers in Physiology, 13, 1059221. https://doi.org/10.3389/fphys.2022.1059221
    Lorimer, A. V., Keogh, J. W., & Hume, P. A. (2018). Using stiffness to assess injury risk: comparison of methods for quantifying stiffness and their reliability in triathletes. PeerJ, 6, e5845. https://doi.org/10.7717/peerj.5845
    Macadam, P., Cronin, J., Neville, J., & Diewald, S. (2019). Quantification of the validity and reliability of sprint performance metrics computed using inertial sensors: A systematic review. Gait & Posture, 73, 26–38. https://doi.org/10.1016/j.gaitpost.2019.07.123
    Maloney, S. J., & Fletcher, I. M. (2018). Lower limb stiffness testing in athletic performance: a critical review. Sports Biomechanics, 20(1), 109–130. https://doi.org/10.1080/14763141.2018.1460395
    Man, H. S., Lam, W. K., Lee, J., Capio, C. M., & Leung, A. K. L. (2016). Is passive metatarsophalangeal joint stiffness related to leg stiffness, vertical stiffness and running economy during sub-maximal running?. Gait and Posture, 49, 303-308. https://doi.org/10.1016/j.gaitpost.2016.07.004
    McMahon, T. A., & Cheng, G. C. (1990). The mechanics of running: how does stiffness couple with speed?. Journal of Biomechanics, 23, 65-78. https://doi.org/10.1016/0021-9290(90)90042-2
    McGill, R. A. (2006). Motor learning and control: Concepts and applications (8thed). New York: McGraw-Hill.
    Mitschke, C., Kiesewetter, P., & Milani, T. L. (2018). The Effect of the Accelerometer Operating Range on Biomechanical Parameters: Stride Length, Velocity, and Peak Tibial Acceleration during Running. Sensors, 18(1), 130. https://doi.org/10.3390/s18010130
    Moore D.S., Notz W.I., Flinger M.A. The Basic Practice of Statistics. 6th ed. W.H. Freeman and Company; New York, NY, USA: 2013.
    Moore, I. S. (2016). Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sports Medicine, 46(6), 793-807. https://doi.org/10.1007/s40279-016-0474-4
    Moore, I. S., Ashford, K. J., Cross, C., Hope, J., Jones, H. S., & McCarthy-Ryan, M. (2019). Humans optimize ground contact time and leg stiffness to minimize the metabolic cost of running. Frontiers in Sports and Active Living, 1, 53. https://doi.org/10.3389/fspor.2019.00053
    Mooses, M., Haile, D. W., Ojiambo, R., Sang, M., Mooses, K., Lane, A. R., & Hackney, A. C. (2021). Shorter ground contact time and better running economy: evidence from female Kenyan runners. The Journal of Strength and Conditioning Research, 35(2), 481-486. https://doi.org/10.1519/JSC.0000000000002669
    Moradian, N., Ko, M., Hurt, C. P., & Brown, D. A. (2023). Effects of backward-directed resistance on propulsive force generation during split-belt treadmill walking in non-impaired individuals. Frontiers in Human Neuroscience, 17, 1214967. https://doi.org/10.3389/fnhum.2023.1214967
    Morgan, D. W., & Craib, M. (1992). Physiological aspects of running economy. Medicine and Science in Sports and Exercise, 24(4), 456-461.
    Morgan, D. W., & Daniels, J. T. (1994). Relationship between VO2max and the aerobic demand of running in elite distance runners. International Journal of Sports Medicine, 15(07), 426-429. https://doi.org/10.1055/s-2007-1021082
    Morin, J. B., Samozino, P., & Millet, G. Y. (2011). Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run. Medicine and Science in Sports and Exercise, 43(5), 829-836. https://doi.org/10.1249/MSS.0b013e3181fec518
    Napier, C., Jiang, X., MacLean, C. L., Menon, C., & Hunt, M. A. (2020). The use of a single sacral marker method to approximate the centre of mass trajectory during treadmill running. Journal of Biomechanics, 108, 109886. https://doi.org/10.1016/j.jbiomech.2020.109886
    Norris, M., Anderson, R., & Kenny, I. C. (2014). Method analysis of accelerometers and gyroscopes in running gait: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 228(1), 3-15. https://doi.org/10.1177/1754337113502472
    Paavolainen, L. M., Nummela, A. T., & Rusko, H. K. (1999). Neuromuscular characteristics and muscle power as determinants of 5-km running performance. Medicine and Science in Sports and Exercise, 31(1), 124-130. https://doi.org/10.1097/00005768-199901000-00020
    Paavolainen, L., Häkkinen, K., Hämäläinen, I., Nummela, A., & Rusko, H. (1999). Explosive-strength training improves 5-km running time by improving running economy and muscle power. Journal of Applied Physiology. https://doi.org/10.1152/jappl.1999.86.5.1527
    Paradisis, G. P., Bissas, A., Pappas, P., Zacharogiannis, E., Theodorou, A., & Girard, O. (2019). Sprint mechanical differences at maximal running speed: Effects of performance level. Journal of Sports Sciences, 37(17), 2026-2036. https://doi.org/10.1080/02640414.2019.1616958
    Paradisis, G. P., Zacharogiannis, E., Bissas, A., & Hanley, B. (2023). Recreational runners gain physiological and biomechanical benefits from super shoes at marathon paces. International Journal of Sports Physiology and Performance, 18(12), 1420-1426. https://doi.org/10.1123/ijspp.2023-0115
    Panebianco, G. P., Bisi, M. C., Stagni, R., & Fantozzi, S. (2018). Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait & posture, 66, 76-82. https://doi.org/10.1016/j.gaitpost.2018.08.025
    Patoz, A., Lussiana, T., Breine, B., Gindre, C., & Malatesta, D. (2021). Both a single sacral marker and the whole-body center of mass accurately estimate peak vertical ground reaction force in running. Gait & Posture, 89, 186–192. https://doi.org/10.1016/j.gaitpost.2021.07.013
    Patoz, A., Lussiana, T., Breine, B., Gindre, C., & Malatesta, D. (2022). A single sacral-mounted inertial measurement unit to estimate peak vertical ground reaction force, contact time, and flight time in running. Sensors, 22(3), 784. https://doi.org/10.3390/s22030784
    Pinnington, H. C., Lloyd, D. G., Besier, T. F., & Dawson, B. (2005). Kinematic and electromyography analysis of submaximal differences running on a firm surface compared with soft, dry sand. European Journal of Applied Physiology, 94, 242-253. https://doi.org/10.1007/s00421-005-1323-6
    Reenalda, J., Maartens, E., Buurke, J. H., & Gruber, A. H. (2019). Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units. Gait and Posture, 68, 155-160. https://doi.org/10.1016/j.gaitpost.2018.11.020
    Reenalda, J., Maartens, E., Homan, L., & Buurke, J. J. (2016). Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics. Journal of Biomechanics, 49(14), 3362-3367. https://doi.org/10.1016/j.jbiomech.2016.08.032
    Riglet, L., Nicol, F., Leonard, A., Eby, N., Claquesin, L., Orliac, B., Ornetti, P., Laroche, D., & Gueugnon, M. (2023). The Use of Embedded IMU Insoles to Assess Gait Parameters: A Validation and Test-Retest Reliability Study. Sensors, 23(19), 8155. https://doi.org/10.3390/s23198155
    Roberts, T. J. (2016). Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. Journal of Experimental Biology, 219(2), 266-275. https://doi.org/10.1242/jeb.124446
    Santos-Concejero, J., Tam, N., Granados, C., Irazusta, J., Bidaurrazaga-Letona, I., Zabala-Lili, J., & Gil, S. M. (2014). Stride angle as a novel indicator of running economy in well-trained runners. The Journal of Strength and Conditioning Research, 28(7), 1889-1895. https://doi.org/10.1519/JSC.0000000000000325
    Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34, 465-485. https://doi.org/10.2165/00007256-200434070-00005
    Shen, S. Q., He, Y. Q., Zhang, Y., Fekete, G., & Zhou, Z. X. (2020). Biomechanical analysis of long distance running on different sports surfaces. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 45, 31-39. https://doi.org/10.4028/www.scientific.net/JBBBE.45.31
    Shiang, T. Y., Hsieh, T. Y., Lee, Y. S., Wu, C. C., Yu, M. C., Mei, C. H., & Tai, I. H. (2016). Determine the foot strike pattern using inertial sensors. Journal of Sensors, 2016. https://doi.org/10.1155/2016/4759626
    Shorten, M. R., & Winslow, D. S. (1992). Spectral analysis of impact shock during running. Journal of Applied Biomechanics, 8(4), 288-304. https://doi.org/10.1123/ijsb.8.4.288
    Smith, C. P., Fullerton, E., Walton, L., Funnell, E., Pantazis, D., & Lugo, H. (2022). The validity and reliability of wearable devices for the measurement of vertical oscillation for running. PloS One, 17(11), e0277810. https://doi.org/10.1371/journal.pone.0277810
    Spurrs, R. W., Murphy, A. J., & Watsford, M. L. (2003). The effect of plyometric training on distance running performance. European Journal of Applied Physiology, 89(1), 1-7. https://doi.org/10.1007/s00421-002-0741-y
    Struzik, A. (2019). Measuring leg stiffness during vertical jumps. Springer International Publishing.
    Struzik, A., Karamanidis, K., Lorimer, A., Keogh, J. W., & Gajewski, J. (2021). Application of leg, vertical, and joint stiffness in running performance: A literature overview. Applied Bionics and Biomechanics, 2021, 9914278. https://doi.org/10.1155/2021/9914278
    Tam, N., Tucker, R., Santos-Concejero, J., Prins, D., & Lamberts, R. P. (2019). Running economy: neuromuscular and joint-stiffness contributions in trained runners. International Journal of Sports Physiology and Performance, 14(1), 16-22. https://doi.org/10.1123/ijspp.2018-0151
    Tojima, M., Osada, A., & Torii, S. (2019). Changes in hip and spine movement with increasing running speed. Journal of Physical Therapy Science, 31(8), 661-665. https://doi.org/10.1589/jpts.31.661
    Watari, R., Hettinga, B., Osis, S., & Ferber, R. (2016). Validation of a Torso-Mounted Accelerometer for Measures of Vertical Oscillation and Ground Contact Time During Treadmill Running. Journal of Applied Biomechanics, 32(3), 306–310. https://doi.org/10.1123/jab.2015-0200
    Weston, A. R., Mbambo, Z. I. P. H. E. L. E. L. E., & Myburgh, K. H. (2000). Running economy of African and Caucasian distance runners. Medicine and Science in Sports and Exercise, 32(6), 1130-1134. https://doi.org/10.1097/00005768-200006000-00015
    Williams III, D. S., Davis, I. M., Scholz, J. P., Hamill, J., & Buchanan, T. S. (2004). High-arched runners exhibit increased leg stiffness compared to low-arched runners. Gait and Posture, 19(3), 263-269. https://doi.org/10.1016/S0966-6362(03)00087-0
    Wilson, J. M., & Flanagan, E. P. (2008). The role of elastic energy in activities with high force and power requirements: a brief review. The Journal of Strength and Conditioning Research, 22(5), 1705-1715. https://doi.org/10.1519/JSC.0b013e31817ae4a7
    Winter, S. C., Lee, J. B., Leadbetter, R. I., & Gordan, S. J. (2015). Validation of a single inertial sensor for measuring running kinematics overground during a prolonged run. Journal of Fitness Research, 5(1), 14-23.
    Wouda, F. J., Giuberti, M., Bellusci, G., Maartens, E., Reenalda, J., Van Beijnum, B. J. F., & Veltink, P. H. (2018). Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors. Frontiers in Physiology, 9, 218. https://doi.org/10.3389/fphys.2018.00218
    Yamamoto, L. M., Lopez, R. M., Klau, J. F., Casa, D. J., Kraemer, W. J., & Maresh, C. M. (2008). The effects of resistance training on endurance distance running performance among highly trained runners: a systematic review. The Journal of Strength and Conditioning Research, 22(6), 2036-2044. https://doi.org/10.1519/JSC.0b013e318185f2f0
    Young, F., Mason, R., Wall, C., Morris, R., Stuart, S., & Godfrey, A. (2022). Examination of a foot mounted IMU-based methodology for a running gait assessment. Frontiers in Sports and Active Living, 4, 956889. https://doi.org/10.3389/fspor.2022.956889
    Zimmermann, P., Müller, N., Schöffl, V., Ehrlich, B., Moser, O., & Schöffl, I. (2022). The Energetic Costs of Uphill Locomotion in Trail Running: Physiological Consequences Due to Uphill Locomotion Pattern—A Feasibility Study. Life, 12(12), 2070. https://doi.org/10.3390/life12122070

    下載圖示
    QR CODE