研究生: |
黃思綿 Szu-Mien Huang |
---|---|
論文名稱: |
臺灣產龜殼花屬蛇類之溫度耐受度 Temperature tolerances of Trimeresurus snakes in Taiwan |
指導教授: |
杜銘章
Tu, Ming-Chung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 龜殼花屬 、溫度耐受度 、海拔分佈 、臨界溫度最高值 、臨界溫度最低值 |
英文關鍵詞: | Trimeresurus, temprature tolerance, altitudinal distribution, CTMax, CTMin |
論文種類: | 學術論文 |
相關次數: | 點閱:274 下載:38 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣產龜殼花屬(Trimeresurus)三種蛇類中,菊池氏龜殼花(T. gracilis)為台灣特有種,且僅分佈於海拔2000公尺以上的山區;而龜殼花(T. mucrosquamatus)及赤尾青竹絲(T. s. stejnegeri)則分佈在海拔2000公尺以下的地區。從台灣的生物地理來看,侷限分佈在高海拔的物種常是冰河期北方地理區系的孓遺物種,且爬行動物屬於外溫動物,環境溫度會直接影響到牠們的生理反應及行為能力。因此溫度可能是造成這些蛇在海拔上區隔分佈的主要因子之一,本研究並預期菊池氏龜殼花的高溫耐受度比龜殼花及赤尾青竹絲差;而後兩者的低溫耐受度比前者差。
當溫度高或低至使動物失去其正常行為能力時,該溫度點即為臨界溫度。本研究將採得的三種蛇先各自在10℃、20℃和30℃的溫度馴化兩星期,之後再進行臨界高溫(CTMax)和臨界低溫(CTMin)的檢測。CTMax的判斷標準為蛇出現張口行為;而當蛇失去翻正反應時,則記錄該溫度為CTMin。
結果顯示,三種蛇皆可透過馴化的方式提升其CTMax及降低其CTMin。菊池氏龜殼花的CTMax在冬天有低於其他兩種蛇的傾向,但夏天沒有此現象;而赤尾青竹絲的CTMin在冬夏兩季都高於菊池氏龜殼花,但龜殼花的CTMin則不一定高於菊池氏龜殼花,故結果只吻合我的部分預期,進一步檢視高低海拔的溫度資料與三種龜殼花的臨界溫度則發現低海拔的環境高溫(35.2℃)並未達到菊池氏龜殼花的CTMax(36.6℃),而三種蛇類在10℃馴化後雖都無法忍受高海拔冬季的地表低溫(2.7℃),但都能忍受地底下一公尺的溫度(6.1℃),故對環境溫度有立即反應的溫度耐受並不是造成台灣龜殼花屬三種蛇類在不同海拔區隔分佈的原因,然而環境溫度是否會經由長期影響蛇類生理表現而達到限制其海拔分佈的結果,還需進一步的實驗才能釐清。
There are three species of Trimeresurus snakes in Taiwan. T. gracilis is the endemic species and it can be found only at an altitude above 2000 meters in Taiwan. Whereas, the other species, T. mucrosquamatus and T. s. stejnegeri inhabit under 2000 meters. In Taiwan, the species that restrict at highland are sometimes the glacial relics of the Paleartic zoogeographical region. Reptiles are ectotherms and temperature may directly affect their physiology and behaviors. Therefore, temperature may become one of the major factors that set the distribution limit of Trimeresurus snakes along different altitude in Taiwan. I predict the critical thermal maximum (CTMax) of T. gracilis is lower than that of T. mucrosquamatus and T. s. stejnegeri. On the other hand, the critical thermal minimum (CTMin) of the latters should higher than that of the former.
Critical temperatures are defined as the thermal points at which the locomotory activity of an animal becomes disorganized and it loses its ability to escape from conditions that will promptly lead to its death. From the ecological viewpoint, critical temperatures are the lethal temperatures. Before testing the CTMax and CTMin, all snakes are individually acclimated at 10℃, 20℃ and 30℃ for more than two weeks. The criterion of CTMax is panting, and that of CTMin is losing the righting responses.
When acclimation temperature is higher, both CTMax and CTMin in all three species become higher. The CTMax of T. gracilis is lower than that of T. mucrosquamatus and T. s. stejnegeri in winter, but not in summer. The CTMin of T. s. stejnegeri is higher than that of T. gracilis in both winter and summer. However, the CTMin of T. mucrosquamatus is not always higher than that of T. gracilis. Consequently, my prediction is only partially supported.
The CTMax (36.6℃) of T. gracilis when acclimated at 10℃ is higher than the highest mean temperature (35.2℃) in lowland nearby Chiai City. On the other hand, the CTMin acclimated at 10℃ of all three species are lower than the temperature (6.1℃) that under ground 1 meter nearby Tatachia, Nantou County. So, I conclude that thermal tolerance is not the main factor that set the distribution limit of Trimeresurus in Taiwan.
Angilletta, M. J., P. H. Niewiarowski and C. A. Navas. 2002. The evolution of thermal physiology in ectotherms. Journal of Thermal Biology. 27(4): 249-268.
Bashey, F. and A. E. Dunham. 1997. Elevational variation in the thermal constraints on and microhabitat preferences of the greater earless lizard Cophosaurus rexanus. Copeia. 1997(4): 725-737.
Brattstrom, B. H. 1965. Body temperatures of reptiles. The American Midland Naturalist. 73: 376-422.
Brattstrom, B. H. 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comparative Biochemistry and Physiology. 24(A): 93-111.
Brattstrom, B. H. 1971. Critical thermal maximum of some Australian skinks. Copeia. 1971: 554-557.
Brattstrom, B. H. and P. Lawrence. 1962. The rate of thermal acclimation in anuran amphibians. Physiological Zoology. 35: 148-156.
Carothers, J. H., S. F. Fox, P. A. Marquet and F. M. Jaksic. 1997. Thermal characteristics of ten Andean lizards of the genus Liolaemus in central Chile. Revista Chilena de Historia Natural. 70: 297-309.
Clark D. R. Jr., and J. C. Kroll. 1974. Thermal ecology of anoline lizards : temperate versus tropical strategies. The Southwestern Naturalist. 19(1): 9-19.
Corn, M. J. 1971. Upper thermal limits and thermal preferenda for three sympatric species of Anolis. Journal of Herpetology. 5(1-2): 17-21.
Cox, C. B. and P. D. Moore. 1993. Biogeography-An ecological and evolutionary approach. 5th ed. Oxford. Blackwell Scientific Publication. pp. 253-276.
Cowles, R. B. and C. M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History. 83: 261-296.
Curry-Lindahl, K. 1979. Thermal ecology of the tree agama (Agama atricollis) in Zaire with a review of heat tolerance in reptiles. Journal of Zoology , London. 188: 185-220.
Du, W.-G., S.-J. Yan and X. Ji. 2000. Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. Journal of Thermal Biology. 25: 197-202.
Feder, M. E. and F. H. Pough. 1975. Temperature selection by the red-backed salamander, Plethodon c. cinereus (Green) (Caudata: Plethodontidae). Comparative Biochemistry and Physiology . 50(A): 91-98.
Gibson, M. B. 1954. Upper lethal temperature relations of the guppy, Lebistes reticulatus. Canadian Journal of Zoology. 32: 393-407.
Gorman, G. C. and S. Hillman. 1977. Physiological basis of climatic niche partitioning in two species of Puerto Rican Anolis (Reptilia, Lacertilia, Iguanidae). Journal of Herpetology. 11: 337-340.
Greer, A. E. 1980. Critical thermal maximum temperatures in Australian scincid lizards : their ecological and evolutionary significance. Australian Journal of Zoology. 28: 91-102.
Gvozdik, L. and A. M. Castilla. 2001. A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata : Lacertidae) along altitudinal gradient. Journal of Herpetology. 35(3): 486-492.
Heatwole, H. and J. Taylor. 1987. Thermal ecology. Ecology of Reptiles, Surrey Beatty & Sons Pty Limited: 21-96.
Hertz, P. E. and R. B. Huey. 1981. Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology. 62(3): 515-521.
Hertz, P. E. and E. Nevo. 1981. Thermal biology of four Israeli agamid lizards in early summer. Israel Journal of Zoology. 30: 190-210.
Huey, R. B. 1982. Temperature, physiology, and the ecology of reptiles. In 'Biology of the Reptilia'. vol. 12. eds. by C. Gans. London, Academic Press. pp. 25-91.
Huey, R. B. and R. D. Stevenson. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist. 19(1): 357-366.
Hutchison, V. H. 1961. Critical thermal maxima in salamanders. Physiological Zoology. 34: 92-125.
Hutchison, V. H. 1976. Factors influencing thermal tolerances of individual organisms. In 'Thermal Ecology Ⅱ. Proc. 2nd SREL Thermal Ecology Symposium'. eds. by G. W. Esch and R. W. McFarlane. Oak Ridge,TN, U. S. National Technical Information Service. pp.10-26.
Hutchison, V. H. and M. R. Ferrance. 1970. Thermal tolerances of Rana pipiens acclimated to daily temperature cycles. Herpetologica. 26: 1-8.
Hutchison, V. H. and J. D. Maness. 1979. The role of behavior in temperature acclimation and tolerance in ectotherms. American Zoologist. 19: 367-384.
Hutchison, V. H., A. Vinegar and R. J. Kosh. 1966. Critical thermal maxima in turtles. Herpetologica. 22: 32-41.
Jacobson, E. R. and W. G. Whitford. 1970. The effect of acclimation on physiological responses to temperature in the snakes,Thamnophis proximus and Natrix rhombifera. Comparative Biochemistry and Physiology . 35(A): 439-449.
Jacobson, E. R. and W. G. Whitford. 1971. Physiological responses to temperature in the patch-nosed snake, Salvadora hexalepis. Herpetologica. 27: 289-295.
Ji, X., W.-G. Du and P.-Y. Sun. 1996. Body temperature, thermal tolerance and influence of temperature on sprint speed and food assimilation on adult grass lizards, Takydromus septentrionalis. Journal of Thermal Biology. 21(3): 155-161.
Joy, J. E. and D. Crews. 1987. Hibernation in garter snakes (Thamnophis sirtalis parietalis): seasonal cycles of cold tolerance. Comparative Biochemistry and Physiology. 87A(4): 1097-1101.
Kano, T. 1940. Zoogeographic studies of the Tsugitaka mountains of Formosa. Tokyo, Japan:Institute for ethno geographical researches.
Keegan, H. L. and T. Matsui. 1964. Observation on the pit viper Trimeresurus gracilis Oshima ,1920. Bulletin of Institute of Zoology, Academia Sinica. 3: 9-18.
Kosh, R. J. and V. H. Hutchison. 1968. Daily rhythmicity of temperature tolerance in eastern painted turtles, Chrysemys picta. Copeia. 1968: 244-246.
Kour, E. L. and V. H. Hutchison. 1970. Critical thermal tolerances and heating and cooling rates of lizards from diverse habitats. Copeia. 1970: 219-229.
Layne Jr., J. R. 1995. Seasonal variation in the cryobiology of Rana sylvatica from Pennsylvania. Journal of Thermal Biology. 20(4): 349-353.
Lillywhite, H. B. 1980. Behavioral thermoregulation in Australian Elapid snakes. Copeia. 1980(3): 452-458.
Lillywhite, H. B. 1987. Temperature, energetics, and physiological ecology. In ‘Snakes-Ecology and Evolutionary Biology’. eds. by R. A. Seigel, J. T. Collins and S. S. Novak. New York, Macmillan Publishing Co. pp. 422-477.
Lowe, C. H. and V. J. Vance. 1955. Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus. Science. 122: 73-74.
Lucas, E. A. and W. A. Reynolds. 1967. Temperature selection by amphibian larvae. Physiological Zoology. 40: 159-171.
Lutterschmidt, W. I. and V. H. Hutchison. 1997a. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Canadian Journal of Zoology. 75: 1553-1560.
Lutterschmidt, W. I. and V. H. Hutchison. 1997b. The critical thermal maximum: history and critique. Canadian Journal of Zoology. 75: 1561-1574.
Marquet, P. A., J. C. Ortiz, F. Bozinovic and F. M. Jaksic. 1989. Ecological aspects of thermoregulation at high altitudes : the case of Andean Liolaemus lizards in northern Chile. Oecologia. 81: 16-20.
Miller, K. and G. C. Packard. 1977. An altitudinal cline in critical thermal maxima of chorus frogs (Pseudacris triseriata). American Naturalist. 111: 267-277.
Ota, H. 1991. Systematics and biogeography of terrestrial reptiles of Taiwan. In Proceeding of the First International Symposium on Wildlife Conservation, ROC. Lin Y. S. and K. H. Chang (eds). p. 88-100. Council of Agriculture. Taipei.
Patterson, J. W. 1991. Emergence, basking behaviour, mean selected temperature and critical thermal minimum in high and low altitude subspecies of the tropical lizard Mabuya striata. African Journal of Ecology. 29: 330-339.
Pough, F. H. and C. Gans. 1982. The vocabulary of reptilian thermoregulation. In ‘Biology of Reptilia’. eds. by C. Gans. London, Academic Press. pp. 17-23.
Reynolds, W. W. and M. E. Casterlin. 1979. Behavioral thermoregulation and the " Final Preferendum " paradigm. American Zoologist. 19(1): 211-224.
Rezende, E. L., I. Silva-Duran, F. F. Novoa and M. Roseenmann. 2001. Does thermal history affect metabolic plasticity?: A study in three Phyllotis species along an altitudinal gradient. Journal of Thermal Biology. 26: 103-108.
Sanders, J. S. and J. S. Jacob. 1981. Thermal ecology of the copperhead (Agkistrodon contortrix). Herpetologica. 37(4): 264-270.
Schwarzkopf, L. 1998. Evidence of geographic variation in lethal temperature but not activity temperature of a lizard. Journal of Herpetology. 32(1): 102-106.
Seibel, R. V. 1970. Variables affecting the critical thermal maximum of the leopard frog, Rana pipiens Schreber. Herpetologica. 26: 208-213.
Smith, M. J. 1957. Temperature tolerance and acclimation in Drosophila obscura. Journal of Experimental Biology. 34: 85-96.
Spellerberg, I. F. 1972a. Temperature tolerance of southeast Australian reptiles examined in relation to reptile thermoregulatory behaviour and distribution. Oecologia. 9: 23-46.
Spellerberg, I. F. 1972b. Thermal Ecology of allopatric lizards (Sphenomorphus) in southeast Australia Ⅰ. The environment and lizard critical temperatures. Oecologia. 9: 371-383.
Spellerberg, I. F. 1973. Critical minimum temperatures of reptiles. In ‘Effects of Temperature on Ectothermic Organisms’. eds. by W. Weiser. Berlin, Springer-Verlag. pp. 239-247.
Spellerberg, I. F. 1976. Adaptations of reptiles to cold. In ‘Morphology and Biology of Reptiles’. eds. by A. d. Bellairs and C. B. Cox. London, Academic Press. pp. 261-285.
Stewart, G. R. 1965. Thermal ecology of the garter snakes Thamnophis sirtalis concinnus (Hallowell) and Thamnophis ordinoides (Baird and Girard). Herpetologica. 21(2): 81-102.
Stuart, L. C. 1951. The distributional implications of temperature tolerances and hemoglobin values in the toads Bufo marinus (Linnaeus) and Bufo bocourti Brocchi. Copeia. 1951(3): 220-229.
Templeton, J. R. 1970. Reptiles. In ‘Comparative Physiology of Thermoregulation’. eds. by G. A. Whittow. New York, Academic Press. pp. 167-218.
Tsuji, J. S. 1988. Thermal acclimation of metabolism in Sceloporus lizards from different latitudes. Physiological Zoology. 61(3): 241-253.
Wilson, M. A. and A. C. Echternacht. 1987. Geographic variation in the critical thermal minimum of the green anole, Anolis carolinensis (Sauria: Iguanidae), along a latitudinal gradient. Comparative Biochemistry and Physiology . 87A(3): 757-760.
Xu, X.-F., Q. Zhao and J. Xiang. 1999. Selected body temperature, thermal tolerance and influence of temperature on food assimilation in juvenile chinese skinks, Eumeces chinensis (Scincidae). The Raffles Bulletin of Zoology. 47(2): 465-471.
方志宇. 1998. 盤古蟾蜍與黑眶蟾蜍的血液攜氧力與血紅素組成之比較. 國立成功大學生物學研究所碩士論文. 台南.
佐藤井岐雄. 1943. 日本產有尾類總說. 日本出版社.
呂光洋和陳賜隆. 1989. 由兩棲爬行動物相探討台灣和大陸的關係. 台灣動物地理淵源研討會論文集. p. 95-122. 台北市立動物園.
呂光洋, 陳世煌和陳賜隆. 1989. 台灣爬蟲動物-陸棲蛇類. 台灣省教育廳. p. 148. 台北.
呂光洋, 杜銘章和向高世. 1999. 過渡的世界-台灣兩棲爬行動物圖鑑. 中華民國自然保育協會. p. 242-243. 台北.
李文傑和呂光洋. 1996. 台灣地區蛇類食性的初探. 師大生物學報 31:119-124.
林俊義和林良恭. 1983. 台灣哺乳類的動物地理初探. 省立博物館科學年刊 26:53-61.
林德恩. 1997. 不同海拔梭德氏赤蛙蝌蚪耗氧量的比較. 國立台灣大學動物學系碩士論文. 台北.
林嘉貞. 2001. 菊池氏龜殼花溫度選擇行為之研究. 國立臺灣師範大學生物學系碩士論文. 台北.
施宜汝. 1997. 不同海拔盤古蟾蜍蝌蚪喜好溫度、發育與代謝之比較. 國立成功大學生物學研究所碩士論文. 台南.
柳榗. 1989. 台灣生物地理概說. 台灣動物地理淵源研討會論文集. p. 15-25. 台北市立動物園.
陳世煌和呂光洋. 1986. 台灣產山椒魚之研究(一)—研究歷史、分佈和形態學之初步研究. 野生動物保育研討會專輯(一)國家公園和自然保留區之野生動物. p. 79-104. 台北.
張麗文. 2002. 不同海拔盤古蟾蜍蝌蚪高溫耐受與其可塑性之比較. 國立成功大學生物學研究所碩士論文. 台南.
黃淑萍. 1998. 不同海拔盤古蟾蜍有氧代謝力及肺換氣的比較. 國立成功大學生物學研究所碩士論文. 台南.
趙爾密,黃美華和宗愉等編. 1998. 中國動物誌-爬行綱第三卷, 有鱗目蛇亞目. p. 442-452. 科學出版社. 北京.
蔡添順和杜銘章. 1998. 赤尾青竹絲雌雄二型性之再探討. 師大生物學報 33(1):13-22.