研究生: |
陳昱先 Chen, Yu-Hsin |
---|---|
論文名稱: |
藉由溶液 -固體 -固體法催化單源先驅物合成硫化鋅及鎘奈米線 Synthesis of ZnS and CdS Nanowires with Single-Source-Precursors via Solution-Solid-Solid Mechanism |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 硫化銀催化 、單源先驅物 、磊晶生長方式 、異質奈米線 |
英文關鍵詞: | silver sulfide catalysts, single-source-precursors, epitaxy growth, hetero-semiconductor nanowires |
DOI URL: | https://doi.org/10.6345/NTNU202203728 |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以「溶液-固體-固體」法於低溫下,藉由固態硫化銀催化溶液態之單源先驅物,再以一步法反應優化並生長出II-VI 族之硫化鋅及硫化鎘半導體奈米線。我們以Zn(DDTC)2 及Cd(DDTC)2 等多硫錯合物鹽類,於100-200℃下引入銀源,除同步生長出硫化銀觸媒粒子及II-VI 族奈米線,並以紫外-可見光吸收光譜、粉末X 光繞射、穿透式電子顯微鏡、X 光吸收光譜等技術,觀察隨反應時間之奈米線生長情況。同時,利用兩相近大小之平面晶格距離,於不同半導體間以磊晶方式生長出硫化鎘-硫化鋅之異質奈米線結構,並測量其導電性之變化。這類II-VI 族半導體奈米線,於溶液中亦可使用中孔洞薄膜材料來限制固態觸媒大小,進而生長出具有方向性之半導體奈米線,以應用在能源轉換之奈米線元件上。
Here we rationally synthesize ZnS and CdS nanowires using single-sourceprecursors via solution-solid-solid (SSS) mechanism in a facile one-step synthesis. Sulfur-rich salt complexes, such as Zn(DDTC)2 and Cd(DDTC)2 were decomposed at 100-200 oC in oleylamine to grow silver sulfide catalysts and subsequently zinc/cadmium sulfide nanowires after an introduction of silver sources into the solution. The nanowires were characterized with UV-vis, PXRD, TEM/HRTEM and EXAFS techniques to reveal the growth mechanisms of the nanowires. Interfaces between CdS-ZnS hetero-semiconductor nanowires are realized by HRTEM and XRD, suggesting epitaxy growth from their close d-spacing in two adjacent semiconductors. Furthermore, we demonstrate growth of oriented nanowires from mesoporous thin film substrates, utilized to energy conversion devices with such oriented semiconductors.
參考文獻:
(1) Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421,
241.
(2) Samuelson, L.; Björk, M. T.; Deppert, K.; Larsson, M.; Ohlsson, B. J.;
Panev, N.; Persson, A. I.; Sköld, N.; Thelander, C.; Wallenberg, L. R.
Physica E Low Dimens. Syst. Nanostruct. 2004, 21, 560.
(3) Yan, R.; Gargas, D.; Yang, P. Nature Photon. 2009, 3, 569.
(4) Yang, P.; Yan, R.; Fardy, M. Nano Lett. 2010, 10, 1529.
(5) Guo, X.; Ying, Y.; Tong, L. Acc. Chem. Res. 2014, 47, 656.
(6) Li, J.; Yu, H.; Li, Y. Nanoscale 2011, 3, 4888.
(7) Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89.
(8) Toko, K.; Nakata, M.; Jevasuwan, W.; Fukata, N.; Suemasu, T. ACS
Appl. Mat. Interfaces 2015, 7, 18120.
(9) Li, S.; Huang, X.; Liu, Q.; Cao, X.; Huo, F.; Zhang, H.; Gan, C. L.
Nano Lett. 2012, 12, 5565.
(10) Tomioka, K.; Motohisa, J.; Fukui, T. In 2015 International
Symposium on VLSI Technology, Systems and Applications 2015, p 1.
(11) Kim, M.-S.; Sung, Y.-M. Chem. Mater. 2013, 25, 4156.
(12) Dong, A.; Yu, H.; Wang, F.; Buhro, W. E. J. Am. Chem. Soc. 2008,
130, 5954.
(13) Dong, A.; Wang, F.; Daulton, T. L.; Buhro, W. E. Nano Lett. 2007, 7,
1308.
(14) Ouyang, L.; Maher, K. N.; Yu, C. L.; McCarty, J.; Park, H. J. Am.
Chem. Soc. 2007, 129, 133.
(15) Wang, J.; Chen, K.; Gong, M.; Xu, B.; Yang, Q. Nano Lett. 2013, 13,3996.
(16) Wang, J.; Fan, W.; Yang, J.; Da, Z.; Yang, X.; Chen, K.; Yu, H.;
Cheng, X. Chem. Mater. 2014, 26, 5647.
(17) Wang, J.; Feng, H.; Chen, K.; Fan, W.; Yang, Q. Dalton Trans. 2014,
43, 3990.
(18) Jung, Y. K.; Kim, J. I.; Lee, J.-K. J. Am. Chem. Soc. 2010, 132, 178.
(19) Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J. Chem. Rev.
2004, 104, 3893.
(20) Yin, Y.; Alivisatos, A. P. Nature 2005, 437, 664.
(21) Lu, A.-H.; Salabas, E. L.; Schüth, F. Angew. Chem. Int. Ed. 2007, 46,
1222.
(22) Li, D.; Zhang, J.; Xiong, Q. ACS Nano 2012, 6, 5283.
(23) Millo, O.; Balberg, I.; Azulay, D.; Purkait, T. K.; Swarnakar, A. K.;
Rivard, E.; Veinot, J. G. C. J. Phys. Chem. 2015, 6, 3396.
(24) Son, D. H.; Hughes, S. M.; Yin, Y.; Paul Alivisatos, A. Science 2004,
306, 1009.
(25) Sadtler, B.; Demchenko, D. O.; Zheng, H.; Hughes, S. M.; Merkle,
M. G.; Dahmen, U.; Wang, L.-W.; Alivisatos, A. P. J. Am. Chem. Soc.
2009, 131, 5285.
(26) Iggland, M.; Mazzotti, M. Cryst. Growth Des. 2012, 12, 1489.
(27) Gentry, S. T.; Kendra, S. F.; Bezpalko, M. W. The J. Phys. Chem. C2011, 115, 12736.
(28) Chen, M.; Feng, Y.-G.; Wang, X.; Li, T.-C.; Zhang, J.-Y.; Qian, D.-J.
Langmuir 2007, 23, 5296.
(29) Shukla, D.; Joshi, A. A.; Mehra, A. Langmuir 2009, 25, 3786.
(30) Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Adv. Mater.2006, 18, 1978.
(31) Zhang, L.; Yang, Q. Nano Lett. 2016, 16, 4008.
(32) Samal, A. K.; Pradeep, T. Nanoscale 2011, 3, 4840.