研究生: |
王俊祺 Wang, Chun-Chi |
---|---|
論文名稱: |
光激發極化銣原子磁共振現象之研究 Study on the Magnetic Resonance Phenomenon of Photoexcited Polarized Rubidium Atoms |
指導教授: |
廖書賢
Liao, Shu-Hsien |
口試委員: |
廖書賢
Liao, Shu-Hsien 陳坤麟 Chen, Kun-Lin 王立民 Wang, Li-Min |
口試日期: | 2024/07/23 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 光磁共振 、鹼金屬極化 |
英文關鍵詞: | Optical magnetic resonance, Alkali metal polarization |
研究方法: | 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202401416 |
論文種類: | 學術論文 |
相關次數: | 點閱:64 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Fernandez, A., Hornero, R., Gomez, C., Turrero, A., Gil-Gregorio, P., Matías-Santos, J., & Ortiz, T. (2010). Complexity analysis of spontaneous brain activity in Alzheimer disease and mild cognitive impairment: an MEG study. Alzheimer Disease & Associated Disorders, 24(2), 182-189.
[2] Pedersen, M., Abbott, D. F., & Jackson, G. D. (2022). Wearable OPM-MEG: A changing landscape for epilepsy. Epilepsia, 63(11), 2745-2753. doi:10.1111/epi.17368
[3] Kähkönen, S., Yamashita, H., Rytsälä, H., Suominen, K., Ahveninen, J., & Isometsä, E. (2007). Dysfunction in early auditory processing in major depressive disorder revealed by combined MEG and EEG. Journal of Psychiatry and Neuroscience, 32(5), 316-322.
[4] Park, J. W., Hill, P. M., Chung, N., Hugenholtz, P. G., & Jung, F. (2005). Magnetocardiography predicts coronary artery disease in patients with acute chest pain. Annals of noninvasive electrocardiology, 10(3), 312-323.
[5] Marquetand, J., Middelmann, T., Dax, J., Baek, S., Sometti, D., Grimm, A., . . . Siegel, M. (2021). Optically pumped magnetometers reveal fasciculations non-invasively. Clinical Neurophysiology, 132(10), 2681-2684.
[6] Marhl, U., Jodko-Władzińska, A., Brühl, R., Sander, T., & Jazbinšek, V. (2022). Transforming and comparing data between standard SQUID and OPM-MEG systems. Plos one, 17(1), e0262669.
[7] Kastler, A. (1954). Les méthodes optiques d'orientation atomique et leurs applications. Proceedings of the Physical Society. Section A, 67(10), 853.
[8] Hawkins, W. B. (1955). Orientation and alignment of sodium atoms by means of polarized resonance radiation. Physical Review, 98(2), 478.
[9] Bell, W. E., & Bloom, A. L. (1957). Optical detection of magnetic resonance in alkali metal vapor. Physical Review, 107(6), 1559.
[10] Skillman, T., & Bender, P. (1958). Measurement of the earth's magnetic field with a rubidium vapor magnetometer. Journal of Geophysical Research, 63(3), 513-515.
[11] Kwiram, A. L. (1967). Optical detection of paramagnetic resonance in phosphorescent triplet states. Chemical Physics Letters, 1(7), 272-275.
[12] Kwiram, A., & Ross, J. (1982). Optical detection of magnetic resonance in biologically important molecules. Annual Review of Biophysics and Bioengineering, 11(1), 223-249.
[13] Carbonera, D., Giacometti, G., Agostini, G., Angerhofer, A., & Aust, V. (1992). ODMR of carotenoid and chlorophyll triplets in CP43 and CP47 complexes of spinach. Chemical Physics Letters, 194(4-6), 275-281.
[14] Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., . . . Bestmann, S. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555(7698), 657-661.
[15] Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., . . . Sims, D. (2020). Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. NeuroImage, 219, 116995.
[16] Xu, S., Yashchuk, V. V., Donaldson, M. H., Rochester, S. M., Budker, D., & Pines, A. (2006). Magnetic resonance imaging with an optical atomic magnetometer. Proceedings of the National Academy of Sciences, 103(34), 12668-12671.
[17] Arimondo, E., Inguscio, M., & Violino, P. (1977). Experimental determinations of the hyperfine structure in the alkali atoms. Reviews of Modern Physics, 49(1), 31.
[18] Nierenbero, W. (1957). The measurement of the nuclear spins and static moments of radioactive isotopes. Annual review of nuclear science, 7(1), 349-406.
[19] Zeeman, P. (1897). XXXII. On the influence of magnetism on the nature of the light emitted by a substance. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(262), 226-239.
[20] Jackson, D. A., & Kuhn, H. (1938). The hyperfine structure of the Zeeman components of the resonance lines of sodium. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 167(929), 205-216.
[21] Vanier, J. (1989). Community and growth: Paulist Press.
[22] Happer, W. (1972). Optical pumping. Reviews of Modern Physics, 44(2), 169.
[23] Schneider, B. M. DESIGN OF OPTICALLY DETECTED MAGNETIC RESONANCE (ODMR) SPECTROMETER.
[24] Polanyi, J., & Woodall, K. (1972). Mechanism of rotational relaxation. The Journal of Chemical Physics, 56(4), 1563-1572.
[25] Kawabata, R., Fukuda, K., & Kandori, A. (2010). Optimized condition for buffer gas in optical-pumped magnetometer operated at room temperature. Japanese journal of applied physics, 49(8R), 082401.
[26] Shi, R.-Y., & Wang, Y.-H. (2013). Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer. Chinese Physics B, 22(10), 100703.
[27] 陳憶緣(2009)。極化銣原子之光磁共振特性研究
[28] Bebb, H. B., & Williams, E. (1972). Photoluminescence I: theory. In Semiconductors and semimetals (Vol. 8, pp. 181-320): Elsevier.
[29] Dehmelt, H. G. (1956). Paramagnetic resonance reorientation of atoms and ions aligned by electron impact. Physical Review, 103(4), 1125.
[30] Bison,G.(2005).Optimization and performance of an optical cardio-magnetometer. Journal of the Optical Society of America B, Vol. 22(No. 1).
[31] Mikhailov, E. E., Novikova, I., Rostovtsev, Y. V., & Welch, G. R. (2004). Buffer-gas-induced absorption resonances inRbvapor. Physical Review A, 70(3). doi:10.1103/PhysRevA.70.033806
[32] Hao-tian, C., Xu-lin, W., & Wei, Q. (2018). Pressure measurement of each gas in alkali-metal vapor cell with a mixed gas based on saturated absorption spectrum. Spectroscopy and Spectral Analysis, 38(3), 948-952.