簡易檢索 / 詳目顯示

研究生: 林俊佑
論文名稱: 鑭摻雜極薄氧化鉿介電層影響之研究
The Influence of Lanthanum Doping Position in Ultra-Thin High-k HfO2 Films
指導教授: 周明
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 氧化鉿溅鍍機氧化鑭鉿高介電係數介電層傳導機制
論文種類: 學術論文
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將鑭摻雜於極薄氧化鉿層,以共鍍的方式完成,形成HfO2/HfLaO/p-Si 與HfLaO/HfO2/p-Si結構,再經由快速熱退火製程,在製程溫度850 °C環境下進行退火。
    材料分析特性如下,運用X-ray反射技術(XRR)藉由膜層光學干涉現象分析單層厚度。使用X-ray繞射光譜儀(XRD)來分析HfO2與silicate是否產生結晶像,以及分析在不同比例厚度有產生結晶。從HfLaO/HfO2/p-Si結構的介面層有較多的silicate與HfO2/HfLaO/p-Si結構作比較。從nano-AES結論中可得知,當鑭摻雜於上層的HfLaO/HfO2/p-Si結構,有較多的鉿會擴散至Si基板。另一方面HfO2/HfLaO/p-Si結構,有較少的擴散的現象產生,此結構有抑止鉿擴散現象,與HfLaO/HfO2/p-Si結構作比較,此現象可以從XPS與TEM分析儀器驗證。在電性分析方面,分析漏電流、電容值量測,及漏電流機制分析。

    第一章 緒論 1 1-1 高介電常數 (high-k)發展 1 1-2 本論文研究方向 1 第二章 文獻探討 2 2-1 金氧半場效電晶體 (metal-oxide-semiconductor field-effect transistor, MOSFET)結構與特性 2 2-2 MOS電容之結構與特性 3 2-2-1 理想之MOS元件 3 2-3 閘極漏電流與氧化層厚薄之關係 7 2-4 介電常數理論 8 2-4-1高介電常數薄膜 9 2-4-1-1 ZrO2薄膜介紹 9 2-4-1-2 Al2O3薄膜介紹 9 2-4-1-3 Y2O3薄膜介紹 10 2-4-1-4 CeO2薄膜介紹 10 2-4-2 氧化鉿與氧化鑭薄膜介紹 11 2-4-3 退火溫度對HfO2薄膜物理及電性影響 11 2-4-3-1 快速熱退火 (Rapid Thermal Anneal, RTA) 11 2-4-3-2 退火溫度對HfO2薄膜物理影響 12 2-4-3-3 退火溫度對HfO2薄膜電性影響 14 2-5 漏電流機制之簡介 15 2-5-1 蕭基發射 (Schottky emission) 15 2-5-2 普爾-法蘭克發射(Poole-Frenkel Emission) 16 2-6 四種氧化層電荷 17 2-6-1 移動離子電荷 (mobile ionic charge, Qm) 18 2-6-2 氧化層陷阱電荷 (oxide trapped charge, Qot) 18 2-6-3 固定氧化層電荷 (fixed oxide charge, Qf) 19 2-6-4 介面陷阱電荷 (interface trapped charge, Qit) 19 2-7 介面層 (interfacial layer) 19 第三章 實驗設計 21 3-1 製程理論與原理 21 3-1-1 直流濺射鍍膜原理及功能 21 3-1-2 直流濺射鍍膜構造及機制 22 3-1-3 射頻濺射鍍膜原理及功能 23 3-1-4 射頻濺射鍍膜構造及機制 24 3-1-5 真空系統 25 3-1-6 退火與快速熱退火系統 27 3-2 分析儀器原理 29 3-2-1 X光繞射原理與X-ray繞射光譜儀 29 3-2-2 X光電子能譜儀 30 3-2-3 橢圓儀 32 3-2-4 穿透式電子顯微鏡 33 3-2-5 TEM試片製備 34 3-3 實驗方法與步驟 35 3-3-1氧化鉿 (HfO2)與氧化鑭鉿 (HfLaO)薄膜電容器製程 35 3-3-2 分析使用儀器 36 第四章 結果與討論 37 4-1 物理特性分析及討論 37 4-1-1 X-ray繞射光譜儀分析及討論 (X-ray diffraction, XRD) 37 4-1-2 X-ray反射技術 (X-ray reflectivity, XRR)分析及討論 38 4-1-3 AFM分析及討論 38 4-1-4 nano-Auger electron microscopy分析及討論 38 4-1-5 XPS分析及討論 39 4-1-6 HRTEM分析及討論 40 4-2電性分析及討論 41 4-2-1 漏電流特性(leakage urrent density–voltage, J-V)分析及討論 41 4-2-2 電容特性(capacitance-voltage, C-V)分析及討論 41 4-2-3 蕭基發射(Schottky emission)漏電流機制分析及討論 43 第五章 結論與未來展望 45 5-1電容器之物性及電性 45 5-2未來展望 46 圖目錄 47 參考文獻 88

    [1] M. Atalla and D. Khang, IEEE Trans. Electron Devices ED-9, 507 (1962).
    [2] 劉傳璽、陳進來,“半導體元件物理與製成”,五南圖書出版股份有限公司,(2006)。
    [3] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s, IEEE Electron Device Lett. 18, 209 (1997).
    [4] S. W. Nam, J. H. Yoo, S. Nam, D. H. Ko, J. H. Ku, and C. W. Yang, Physical and electrical degradation of ZrO2 thin films with aluminum electrode, Mater. Sci. Eng., B 102, 108 (2003).
    [5] G. D. Wilk, R. M. Wallace, and J. M. Anthony, High-k gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89, 5243 (2001).
    [6] J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, Thermodynamic stability of high-k dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2, Appl. Phys. Lett. 80, 1897 (2002).
    [7] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, High quality La203 and A1203 gate dielectrics with equivalent oxide thickness 5-10Å, Symp. VLSI Tech. Dig. 16 (2000).
    [8] S. H. Bae, C. H. Lee, R. Clark, and D. L. Kwong, MOS characteristics of ultrathin CVD HfAlO gate dielectrics, IEEE Electron Device Lett. 24, 556 (2003).
    [9] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics, IEEE Electron Device Lett. 23, 649 (2002).
    [10] F. Paumier and R. J. Gaboriaud, Interfacial reactions in Y2O3 thin films deposited on Si(100), Thin Solid Films 441, 307 (2003).
    [11] S. K. Kang, D. H. Ko, E. H. Kim, M. H. Cho, and C. N. Whang, Interfacial reactions in the thin Y2O3 on chemically oxidized Si(100) substrate systems, Thin Solid Films 353, 8 (1999).
    [12] P. S. Das, G. K. Dalapati, D. Z. Chi, A. Biswas, and C.K. Maiti, Characterization of Y2O3 gate dielectric on n-GaAs substrates, Appl. Surf. Sci. 256, 2245 (2010).
    [13] S. Logothetidis, P. Patsalas, E. K. Evangelou, N. Konofaos, I. Tsiaoussis, and N. Frangis, Dielectric properties and electronic transitions of porous and nanostructured cerium oxide films, Mater Sci. Eng. 109, 69 (2004).
    [14] K. Karakaya, B. Barcones, Z. M. Rittersma, J. G. M. Berkum, M. A. Verheijen, G. Rijnders, and D. H. A. Blank, Electrical and structural characterization of PLD grown CeO2-HfO2 laminated high-k gate dielectrics, Mat. Sci. Semicond. Process 9, 1061 (2006).
    [15] Z. M. Rittersma, J. C. Hooker, and G. Vellianitis, Characterization of field-effect transistors with La2Hf2O7 and HfO2 gate dielectric layers deposited by molecular-beam epitaxy, J. Appl. Phys. 99, 024508 (2006).
    [16] L. Y. Huang, A. D. Li, W. Q. Zhang, H. Li, Y. D. Xia, and D. Wu, Fabrication and characterization of La-doped HfO2 gate dielectrics by metal-organic chemical vapor deposition, Appl. Surf. Sci. 256, 2496 (2010).
    [17] E. Rauwel, C. Dubourdieu, B. Holländer, N. Rochat, F. Ducroquet, M. D. Rossell, G. V. Tendeloo, and B. Pelissier, Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition, Appl. Phys. Lett. 89, 012902 (2006).
    [18] Y. S. Lin, R. Puthenkovilakam, and J. P. Chang, Dielectric property and thermal stability of HfO2 on silicon, Appl. Phys. Lett. 81, 2041 (2002).
    [19] M. Wu, Y. I. Alivov, and H. Morkoc, High-k dielectrics and advanced channel concepts for Si MOSFET, Mater. Electron. 19, 915 (2008).
    [20] C. L. Cheng, J. H. Horng, J. T. Jeng, and M. S. Chiu, Composition effects of TixTay dual-doped HfOx/SiO2 stacked dielectrics on electrical and reliability characteristics of advanced metal-oxide-semiconductor capacitors, IEEE Trans. Device Mater. Reliab. 10, 116 (2010).
    [21] A. Dimoulas, G. Mavrou, G. Vellianitis, E. Evangelou, and N. Boukos, HfO2 high-k gate dielectrics on Ge (100) by atomic oxygen beam deposition, Appl. Phys. Lett. 86, 32908 (2005).
    [22] J. H. Hong, T. H. Moon, and J. M. Myoung, Microstructure and characteristics of the HfO2 dielectric layers grown by metalorganic molecular beam epitaxy, Microelectron. Eng. 75, 263 (2004).
    [23] Y. S. Lin, R. Puthenkovilakam, and J. P. Chang, Dielectric property and thermal stability of HfO2 on silicon, Appl. Phys. Lett. 81, 2041 (2002).
    [24] G. D. Wilk, R. M. Wallace, and J. M. Anthony, Hafnium and zirconium silicates for advanced gate dielectrics, J. Appl. Phys. 87, 484 (2000).
    [25] K. Okamoto, M. Adachi, K. Kakushima, P. Ahmet, N. Sugii, and K. Tsutsui, Effective control of flat-band voltage in HfO2 gate dielectric with La2O3 incorporation, Proceeding of the 37th European Solid-State Device Research Conference (EDSSDRC 2007), p. 199.
    [26] C. H. Liu, P. C. Juan, and J. Y. Lin, The influence of lanthanum doping position in ultra-thin HfO2 films for high-k gate dielectrics, Thin Solid Films to be appeared (2010).
    [27] P. C. Juan, C. H. Liu, M. Jou, Y. K. Chen, Y. W. Liu, C. W. Hsu, Y. H. Chou, and J. Y. Lin, The influence of lanthanum doping position in ultra-thin HfO2 films for high-k gate dielectrics, International Thin Films Conf. C207 (2009).
    [28] X. P. Wang, M. F. Li, A. Chin, C. X. Zhu, J. Shao, D. S. H. Chan, and D. L. Kwong, Physical and electrical characteristics of high-k gate dielectric Hf(1-x)LaxOy, Solid-State Electron. 50, 986 (2006).
    [29] X. P. Wang, H.Y. Yu, M. F. Li, C.X. Zhu, S. Biesemans, Y. C. Yeo, G. Q. Lo, and D. L. Kwong, Work function tunability of refractory metal nitrides by lanthanum or aluminum doping for advanced CMOS devices, IEEE Trans. Electron Devices 28, 2871 (2007).
    [30] K. Xiong and J. Robertson, Electronic structure of oxygen vacancies in La2O3, Lu2O3 and LaLuO3, Microelectron. Eng. 86, 1672 (2009).
    [31] Q. Lu, H. Takeuchi, R. Lin, T. J. King, C. Hu, K. Onishi, R. Choi, C. S. Kang, and J. C. Lee, Hot carrier reliability of n-MOSFET with ultra-thin HfO2 gate dielectric and Poly-Si gate, Proceedings of the International Reliability Physics Symposium. (IRPS, 2002), p. 429.
    [32] Hong Xiao,譯者 羅正忠、張鼎張,“半導體製程技術導論(修訂板)”,學銘圖書有限公司、歐亞書局有限公司(2007)。
    [33] S. W. Jeong, H. J. Lee, K. S. Kim, M. T. You, Y. Roh, T. Noguchi, W. Xianyu, and J. Jung, HfO2 gate insulator formed by atomic layer deposition for thin-film-transistors, Thin Solid Films 515, 5109 (2007).
    [34] F. C. Chiu, Interface characterization and carrier transportation in metal/HfO2/silicon structure, J. Appl. Phys. 100, 114102 (2006).
    [35] K. Y. Cheong, J. H. Moon, H. J. Kim, W. Bahng, and N. K. Kim,, Current conduction mechanisms in atomic-layer-deposited HfO2 /nitrided SiO2 stacked gate on 4H silicon carbide, J. Appl. Phys. 103, 084113 (2008).
    [36] W. C. Shih, P. C. Juan, and J. Y. M. Lee, Fabrication and characterization of metal-ferroelectric (PbZr0.53Ti0.47O3)-Insulator (Y2O3)-semiconductor field effect transistors for nonvolatile memory applications, J. Appl. Phys. 103, 094110 (2008).
    [37] Z. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G. Fang, M. Li, and X. Zhao, Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films, J. Appl. Phys. 104, 084106 (2008).
    [38] H. L. Hwang, Y. K. Chiou, C. H. Chang, C. C. Wang, K. Y. Lee, T. B. Wu , R. Kwo, and A. Chin, Advance in next Century nanoCMOSFET research, Appl. Surf. Sci. 254, 236 (2007).
    [39] H.W. Chen, S.Y. Chen, K. C. Chen, H. S. Huang, C. H. Liu, F. C. Chiu, K.W. Liu, K. C. Lin, L. W. Cheng, C. T. Lin, G. H. Ma, and S.W. Sun, Electrical characterization and carrier transportation in Hf-silicate dielectrics using ALD gate stacks for 90 nm node MOSFETs, Appl. Surf. Sci. 254, 6127 (2008).
    [40] L. Yan, S. H. Olsen, E. E. Cousin, and A. G. O’Neill, Improved gate oxide integrity of strained Si n-channel metal oxide silicon field effect transistors using thin virtual substrates, J. Appl. Phys. 103, 094508 (2008).
    [41] S. Pan, S. J. Ding, Y. Huang, Y. J. Huang, D. W. Zhang, L. K. Wang, and R. Liu, High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors, J. Appl. Phys. 102, 073706 (2007).
    [42] R. Katamreddy, R. Inman, G. Jursich., A. Soulet, and C. Takoudis, Nitridation and oxynitridation of Si to control interfacial reaction with HfO2, Thin Solid Films 516, 8498 (2008).
    [43] 國家實驗研究院,“真空技術與應用”,儀器科技研究中心,(2001)。
    [44] 汪建民,“材料分析”,中國材料學會,(1998)。
    [45] 陳力俊,“材料電子顯微鏡學”,國家實驗研究院儀器科技研究中心,(1994)。
    [46] Y. Yamamoto, K. Kita, K. Kyuno, and A. Toriumi, Structural and electrical properties of HfLaOx films for an amorphous high-k gate insulator, J. Appl. Phys. 89, 032903 (2006).
    [47] P. C. Juan, C. H. Liu, M. Jou, Y. K. Chen, Y. W. Liu, C. W. Hsu, Y. H. Chou, and J. Y. Lin, Depth profiles and chemical bonding states of graded doping and ultra-thin HfLaO high-k dielectrics deposited on silicon substrate, IEEE International NanoElectronics Conference (IEEE
    INEC 2010), EP219.
    [48] C. H. Liu, H. W. Chen, S. Y. Chen, H. S. Huang, and L. W. Cheng, Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics, Appl. Phys. Lett. 95, 012103 (2009).

    無法下載圖示 本全文未授權公開
    QR CODE