研究生: |
林永祥 Yong-Siang Lin |
---|---|
論文名稱: |
鑑定Him基因於果蠅心臟發育的功能 Functionnal Characterization of a Novel gene ,Him , in Heart Development of Drosophila |
指導教授: |
蘇銘燦
Su, Ming-Tsan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 果蠅 、先天性心臟病 、心臟發育 、中胚層 |
英文關鍵詞: | drosophila, heart development, mesoderm, tinman, Him, pannier, mef2, twist |
論文種類: | 學術論文 |
相關次數: | 點閱:281 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動物發育過程中,心臟是第一個有功能器官。生理上,心臟提供血液循環全身的動力,因此心臟是動物體最重要的器官之一,撇開形態上的差別,果蠅的心臟發育,在許多方面與脊椎動物的心臟發育是相似的,例如:兩者的心臟皆由中胚層衍生,參與控制心臟特化及分化的基因在不同物種間具有高度的演化保守性,如轉錄因子: tinman,gata4,mef2在果蠅及哺乳動物心臟發生的過程中表現的類似型態及相似功能。其中Homeobox gene tinman最為重要,tinman的突變果蠅,沒有背血管先驅細胞產生,也就是說不會有心臟的產生,在不同物種中如老鼠、青蛙、魚也找到與tinman相似的NKX2 group基因,且這些同源基因在心臟的發育上也扮演不可或缺的角色。研究顯示tinman籍由許多下游或平行基因的協同作用執行其在心臟發育的功能,而進一步探討這些基因間的相互關係,有助吾人對心臟發育全面的瞭解。本研究的主要目的在進一步分離更多與心臟發育有關的基因並闡明其在心臟發育的角色,籍由果蠅基因體計畫網站所提供的平台(Berkeley Drosophila Genome Project: Patterns of gene expression in Drosophila embryogenesis),我們鑑定出一個與心臟發育有關的候選基因Him,相較於tinman,Him略晚表現於中胚層為,晚期侷限於心臟與tinman相同,由於tinman為果蠅心臟發育上所必需的基因,him 與tinman 在表現形態的關係是否也反應兩者在心臟發育拌演的角色,則為本研究所要探討的問題。利用原位雜合(In situ hybridization)我們詳細確認Him表現於心肌及圍心細胞,以心臟特異性的分子標誌染色,我們發現 Him 功能缺失的果蠅突變株心肌細胞會增多,這樣的性狀也同樣的以RNAi的轉殖果蠅株得到証實,相反的在Him的功能獲效之果蠅株中,心肌細胞則增多。此外由啟動子的研究當中,我們確認了Him在中胚層的表現子,也証實其在中胚層的表現是受到Tinman、Pannier及Dmef2發育特定基因的調控。
Abstract
During animal embryogenesis, heart is the first funtional organ to be formed. Heart provides pulsative power for circulation of blood cells, therefore, heart is considered as one of the most important organs in animal. Despide the morphological difference, cardiogenesis in both Drosophila and vertebrates are quite similar. For instance: hearts of both fly and vertebrates are derived from mesoderm. Furthmore, most genes involved in cardogenesis, such as tinman, gata4 and mef2, are evolutionary conserved in different species. The homeobox containing gene, tinman plays a vital role in developing heart. The heart precursor cells are missing in tinamn mutant embryos, which leads to abolish of the mature heart. Tinman homologs, Nkx 2 group genes, were also discovered in dirrerence organisms, including mouse, Xenopus and Zerbra fish, which shown to play essential roles during heart development. Acummulate evidences suggested that tinman exerts its function by activating down-stream genes or acting synergistically with other genes to specify different cardial cell types. Disseting the interaction of these genes will assist us greatly in understanding the cardiogenesis of aninmals. The major objective of this study is to identified more cadiogenic genes, and elucidate their fndtion during heart development. From the platform of gene expression in Drosophila which is provided by Berkeley Drosophila Genome Project, we have identified a candidate gene, him, that may participate in heart development of Drosophila. Expression of Him in mesoderm is later than that of tinman. Later both tinman and Him are expressed restrictly in heart. As tinman is an essential gene in heart morphogenesis, we would like to address whether Him and tinman plays same roles as suggested by their expression profiles in this study. Using in situ hybridization we have found that Him is expressed in cardial and pericardial cells. Numbers of cardial cells are increased in loss-of-funtion embryos of Him. Similar phenotypes had been observed in him RNAi transgenic flies. In addition, we have characterized the mesoderm enhancer of Him and demonstrated that Him is regulated by tinman, pannier and Dmef2. Further studies are needed to show if Him is a direct target of these gene.
捌、參考文獻
Alvarez, A. D., Shi, W., Wilson, B. A. and Skeath, J. B. (2003). pannier and pointedP2 act sequentially to regulate Drosophila heart development. development 130, 3015-26.
Andree, B., Duprez, D., Vorbusch, B., Arnold, H. H. and Brand, T. (1998). BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 70, 119-31.
Azpiazu, N. and Frasch, M. (1993). tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7, 1325-40.
Beiman, M., Shilo, B. Z. and Volk, T. (1996). Heartless, a Drosophila FGF receptor homolog, is essential for cell migration and establishment of several mesodermal lineages. Genes Dev 10, 2993-3002.
Bergman, C. M., Pfeiffer, B. D., Rincon-Limas, D. E., Hoskins, R. A., Gnirke, A., Mungall, C. J., Wang, A. M., Kronmiller, B., Pacleb, J., Park, S. et al. (2002). Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 3, RESEARCH0086.
Bodmer, R. (1993). The gene tinman is required for specification of the heart and visceral muscles in Drosophila. development 118, 719-29.
Brand, A. H. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. development 118, 401-15.
Carmena, A., Gisselbrecht, S., Harrison, J., Jimenez, F. and Michelson, A. M. (1998). Combinatorial signaling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes Dev 12, 3910-22.
Chen, C. Y. and Schwartz, R. J. (1995). Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J Biol Chem 270, 15628-33.
Chen, G. and Courey, A. J. (2000). Groucho/TLE family proteins and transcriptional repression. Gene 249, 1-16.
Chiu I.S., H. S. W., Wang J.K., Wu M.H., Chu S.H., Lue H.C., Hung C.R. (1988). Clinical implications of atrial isomerism. Br Heart J 60, 72-7.
Cripps, R. M. and Olson, E. N. (2002). Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 246, 14-28.
Frasch, M. (1999). Intersecting signalling and transcriptional pathways in Drosophila heart specification. Semin Cell Dev Biol 10, 61-71.
Furlong, E. E., Andersen, E. C., Null, B., White, K. P. and Scott, M. P. (2001). Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629-33.
Gajewski, K., Choi, C. Y., Kim, Y. and Schulz, R. A. (2000). Genetically distinct cardial cells within the Drosophila heart. Genesis 28, 36-43.
Gajewski, K., Fossett, N., Molkentin, J. D. and Schulz, R. A. (1999). The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila. development 126, 5679-88.
Gajewski, K., Kim, Y., Choi, C. Y. and Schulz, R. A. (1998). Combinatorial control of Drosophila mef2 gene expression in cardiac and somatic muscle cell lineages. Dev Genes Evol 208, 382-92.
Gajewski, K., Zhang, Q., Choi, C. Y., Fossett, N., Dang, A., Kim, Y. H., Kim, Y. and Schulz, R. A. (2001). Pannier is a transcriptional target and partner of Tinman during Drosophila cardiogenesis. Dev Biol 233, 425-36.
Gunthorpe, D., Beatty, K. E. and Taylor, M. V. (1999). Different levels, but not different isoforms, of the Drosophila transcription factor DMEF2 affect distinct aspects of muscle differentiation. Dev Biol 215, 130-45.
Han, Z. and Bodmer, R. (2003). Myogenic cells fates are antagonized by Notch only in asymmetric lineages of the Drosophila heart, with or without cell division. development 130, 3039-51.
Han, Z., Fujioka, M., Su, M., Liu, M., Jaynes, J. B. and Bodmer, R. (2002). Transcriptional integration of competence modulated by mutual repression generates cell-type specificity within the cardiogenic mesoderm. Dev Biol 252, 225-40.
Holland, N. D., Venkatesh, T. V., Holland, L. Z., Jacobs, D. K. and Bodmer, R. (2003). AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol 255, 128-37.
Kim, Y. O., Park, S. J., Balaban, R. S., Nirenberg, M. and Kim, Y. (2004). A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc Natl Acad Sci U S A 101, 159-64.
Klinedinst, S. L. and Bodmer, R. (2003). Gata factor Pannier is required to establish competence for heart progenitor formation. development 130, 3027-38.
Knirr, S. and Frasch, M. (2001). Molecular integration of inductive and mesoderm-intrinsic inputs governs even-skipped enhancer activity in a subset of pericardial and dorsal muscle progenitors. Dev Biol 238, 13-26.
Lai, E. C. (2004). Notch signaling: control of cell communication and cell fate. development 131, 965-73.
Lee, H. H. and Frasch, M. (2000). Wingless effects mesoderm patterning and ectoderm segmentation events via induction of its downstream target sloppy paired. development 127, 5497-508.
Lee, Y. M., Park, T., Schulz, R. A. and Kim, Y. (1997). Twist-mediated activation of the NK-4 homeobox gene in the visceral mesoderm of Drosophila requires two distinct clusters of E-box regulatory elements. J Biol Chem 272, 17531-41.
Lee, Y. S. and Carthew, R. W. (2003). Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30, 322-9.
Lewis Wolper, R. B., Thomas Jessell,Peter Lawrence,Elliot Meyerowiz,Jim Smith. (2002). Principles of Development.
Lin, S. C. and Storti, R. V. (1997). Developmental regulation of the Drosophila Tropomyosin I (TmI) gene is controlled by a muscle activator enhancer region that contains multiple cis-elements and binding sites for multiple proteins. Dev Genet 20, 297-306.
Lockwood, W. K. and Bodmer, R. (2002). The patterns of wingless, decapentaplegic, and tinman position the Drosophila heart. Mech Dev 114, 13-26.
Lue H.C., C. C. M., Hsu J.Y., Chen C.L. (1976). The prevalence and type of congenital heart disease in Chinese. J Formosan Med Asso 75, 53-9.
Lue H.C., C. C. M., Hsu J.Y., Chen C.L. (1986). Is subpulmonic ventricular septal defect an oriental disease; In: Subpulmonic ventricular septal defect. Spinger-Verlag, 1-8.
Michelson, A. M., Gisselbrecht, S., Buff, E. and Skeath, J. B. (1998a). Heartbroken is a specific downstream mediator of FGF receptor signalling in Drosophila. development 125, 4379-89.
Michelson, A. M., Gisselbrecht, S., Zhou, Y., Baek, K. H. and Buff, E. M. (1998b). Dual functions of the heartless fibroblast growth factor receptor in development of the Drosophila embryonic mesoderm. Dev Genet 22, 212-29.
Park, M., Lewis, C., Turbay, D., Chung, A., Chen, J. N., Evans, S., Breitbart, R. E., Fishman, M. C., Izumo, S. and Bodmer, R. (1998). Differential rescue of visceral and cardiac defects in Drosophila by vertebrate tinman-related genes. Proc Natl Acad Sci U S A 95, 9366-71.
Patterson, K. D., Cleaver, O., Gerber, W. V., Grow, M. W., Newman, C. S. and Krieg, P. A. (1998). Homeobox genes in cardiovascular development. Curr Top Dev Biol 40, 1-44.
Ponzielli, R., Astier, M., Chartier, A., Gallet, A., Therond, P. and Semeriva, M. (2002). Heart tube patterning in Drosophila requires integration of axial and segmental information provided by the Bithorax Complex genes and hedgehog signaling. development 129, 4509-21.
Rebeiz, M., Reeves, N. L. and Posakony, J. W. (2002). SCORE: a computational approach to the identification of cis-regulatory modules and target genes in whole-genome sequence data. Site clustering over random expectation. Proc Natl Acad Sci U S A 99, 9888-93.
Riechmann, V., Irion, U., Wilson, R., Grosskortenhaus, R. and Leptin, M. (1997). Control of cell fates and segmentation in the Drosophila mesoderm. development 124, 2915-22.
Sparrow, D. B., Cai, C., Kotecha, S., Latinkic, B., Cooper, B., Towers, N., Evans, S. M. and Mohun, T. J. (2000). Regulation of the tinman homologues in Xenopus embryos. Dev Biol 227, 65-79.
Su, M. T., Fujioka, M., Goto, T. and Bodmer, R. (1999). The Drosophila homeobox genes zfh-1 and even-skipped are required for cardiac-specific differentiation of a numb-dependent lineage decision. development 126, 3241-51.
Tapanes-Castillo, A. and Baylies, M. K. (2004). Notch signaling patterns Drosophila mesodermal segments by regulating the bHLH transcription factor twist. Development 131, 2359-72.
Taylor, M. V., Beatty, K. E., Hunter, H. K. and Baylies, M. K. (1995). Drosophila MEF2 is regulated by twist and is expressed in both the primordia and differentiated cells of the embryonic somatic, visceral and heart musculature. Mech Dev 50, 29-41.
TyAnna L. Lovato, T. P. N., Marco R. Molina and Richard M. Cripps*. (2002). The Hox gene abdominal-Aspecifies heart cell fate in the Drosophiladorsal
vessel. development 129, 2019-5027.
Ward, E. J. and Coulter, D. E. (2000). odd-skipped is expressed in multiple tissues during Drosophila embryogenesis. Mech Dev 96, 233-6.
Ward, E. J. and Skeath, J. B. (2000). Characterization of a novel subset of cardiac cells and their progenitors in the Drosophila embryo. development 127, 4959-69.
Yin, Z. and Frasch, M. (1998). Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Dev Genet 22, 187-200.
Yin, Z., Xu, X. L. and Frasch, M. (1997). Regulation of the twist target gene tinman by modular cis-regulatory elements during early mesoderm development. development 124, 4971-82.
Yuan, W. Z., Bodmer, R., Zhu, C. B., Wang, Y. Q., Li, Y. Q. and Wu, X. S. (2002). [The use of RNAi as a technique to study the functions of heart-related genes in Drosophila]. Yi Chuan Xue Bao 29, 34-8.
Zaffran, S. and Frasch, M. (2002). Early signals in cardiac development. Circ Res 91, 457-69.