研究生: |
伍開成 Kai Cheng Wu |
---|---|
論文名稱: |
硫化鎘(CdS)奈米粒子之製備與其特性之探討 Preparation and Characterizations of CdS Nanoparticles |
指導教授: |
洪偉修
Hung, Wei-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 硫化格奈米粒子 |
英文關鍵詞: | CdS nanoparticles |
論文種類: | 學術論文 |
相關次數: | 點閱:174 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文以研究硫化鎘(CdS)半導體奈米粒子之合成、光學性質與粒子在基材上分佈的情形為主。實驗內容包括兩部份,首先對奈米粒子進行光照蝕刻,期望能控制奈米粒子的尺寸單一性;以及藉由電化學方法在基材上(玻璃碳電極、高溫取向熱解石墨)沈積 CdS奈米粒子。經由控制電鍍的條件,合成出均勻度佳、分散性好的奈米粒子。此法的優點包含高產量、低成本以及易操作等特性。
在光照蝕刻部份,我們以非錯合性溶劑反應系統合成出 CdS奈米粒子,利用白光照射粒子進行蝕刻;經由改變光照時間,探討粒子尺寸的變化。從UV-Vis光譜儀,發現蝕刻後的粒子尺寸會隨著光照時間的增加而變小,在吸收光譜上呈現藍位移。此外,藉由公式估算及AFM可獲知粒子尺寸大小與在基材表面的分布情形,發現粒子粒徑經蝕刻後有明顯變小的現象。
在電化學部份,我們利用定電位的方式,電鍍CdS奈米粒子。根據實驗結果,從AFM及SEM的影像中,發現奈米粒子的大小與電鍍時間成正比;並利用XPS確認以定電位的方式能成功合成出CdS奈米粒子。
Abstract
In this study, the optical properties and morphology of CdS semiconductor nanoparticles on the substrate are investigated. There are two experimental parts for preparing CdS nanoparticles; “top-down” and “bottom-up”. For the first part, we examined the characterization of CdS semiconductor nanoparticles prepared by the size-selective photoetching technique; in the second part, CdS nanoparticles were deposited on the GC (glassy carbon) or HOPG (highly oriented pyrolytic graphite) by electrochemical/chemical synthesis. The latter has not only higher yield but also lower cost and better control. We also hope to get a uniform and good quantity of nanoparticles by changing the synthesis conditions.
In the size-selective photoetching, CdS nanoparticle were prepared by the noncoordinating solvent system and the different sizes were obtained by changing the irradiation time with the monochromatic light. It is a well-known fact that semiconductors exhibit quantum size effects when their size is smaller than the bulk exciton radius as a result of the spatial confinement of the charge carriers. This effect caused the shift of the onset of UV-Vis absorption to higher energy (blue shift). The size-selective properties were characterized by AFM measurements and were compared with Henglein’s empirical equation.
We also used the electrochemical/chemical method to prepare the CdS nanoparticles at a constant potential. AFM and SEM images showed that the sizes of the nanoparticles depend on the depositing time. The Cd 3d and S 2p XPS peaks indicate the presence of CdS nanoparticles on the surface.
參考文獻
(1) L. E. Brus;A. L. Efros;T. J. Itoh. Lumin. 1996, 70, R7-R8.
(2) P. Ball. Nature. 2001, 414, 142.
(3) S. A. Majetich;Y. Jin. Science. 1999, 284, 470.
(4) C. H. Back;R. Allenspach;W. Weber;S. S. P.;D. Waller;
E. L. Garwin;H. C. Siegmann. Science.1999, 285, 864.
(5) Z. Yong;Ji. Qingmin;M. Mitsutoshi;K. Shoko;S. Toshimi
Chem. Mater. 2006, 18, 403.
(6) Z. A. Peng;X. Peng;J. Am. Chem. Soc. 2002, 124, 3343.
(7) K. Akamastu;T. Tsuruoka;H. Nawafune. J. Am. Chem. Soc.
2005, 127, 1634.
(8) Q. H. Wei;C. Bechinger;P. Leiderer. Science. 2000, 287, 265.
(9) E. W. Wong;P. E. Sheehan;C. M. Leiber. Science. 1997, 277,
1971
(10) E. A. Meulenkamp. J. Phys. Chem. B. 1998, 102, 7764.
(11) R. M. Penner. Acc.Chem.Res. 2000, 33, 78.
(12) Q. Li;M. A. Brown;J. C. Hemminger;R. M. Penner. Chem
Mater. 2006, 18, 3432.
(13) L. Ouyang;K. N. Maher;Y. C. Liang;J. M. Carty;H. Park.
J. Am. Chem. Soc. 2007, 129, 133.
(14) A. P. Alivisatos. J. Phys. Chem. 1996, 100, 13226.
(15) A. N. Goldstein;C. M. Echer;A. P. Alivisatos. Science. 1992,
256, 1425.
(16) K. P. Jain;”Physics of Semiconducting Nanostructure”, Narosa Publication, 1997, 25.
(17) N. D. Kumar;M. P. Joshi;C. S. Friend. Appl. Phys. Lett. 1997,
10, 71, 1388.
(18) W. Z. Tang;C. P. Huang. Chemosphere. 1995, 30, 7, 1385.
(19) A. Kampmann;D. Lincot;Electroanal.Chem. 1996, 418, 73.
(20) P. Daocheng;W.Qiang;P. Jiebin;J. Shichun;Ji. Xiangling
An. Lijia. Chem. Mater. 2006, 18, 4253.
(21) Li. Ouyang;K. N. Maher;Y. C. Liang;J. McCarty;H. K.
Park. J. Am. Chem. Soc. 2007, 129, 133.
(22) J. P. Lowe;K. A. Peterson. “Quantum Chemistry” Third Edition,
2006.
(23) L. Brus. J. Phys. Chem.1986, 90, 2555.
(24) a. A. P. Alivisatos. Science. 1996, 271, 933.
b. Y. Wang;N. Herron. J. Phys. Chem. 1991, 95, 525.
(25) Y. H. Yeh;M. S. Yeh;Y. P. Lee;C. S. Yeh. Chem. Lett. 1998,
1183.
(26) Y. S. Yang;H. F. Lee;Y. H. Yeh;M. S. Yeh;Y. P. Lee;
C. S. Yeh. J. Phys. Chem. B. 1999,103,6851.
(27) Y. Wang;N. Herron. J. Phys. Chem. 1991, 95, 525.
(28) W. Chen,;Z. G. Wang,;Z. J. Lin,;J. J. Qian,;L. Y. Lin,
Solid. State.Commun. 1996, 100, 101.
(29) M. Lahav;E. A. Weiss;Q. B. Xu;G. M .Whitesides.
Nano. Letters. 2006., 6, No. 9, 2166.
(30) A. Eychmuller ; L. Katsikas ; H. Weller, Langmuir. 1990, 6,
1605.
(31) A. Henglein. Chem. Rev. 1989. 89. 1861.
(32) A. V. Dijken;A. H. Janssen;M. H. P. Smitsmans;A. Meijerink
;D.Vanmaekelbergh. Chem. Mater. 1998, 10, 3513.
(33) J. Nanda;B. A. kuruvilla;K. V. P. Shafi;D. D. Sarma.
Phy. Rev. B. 1999, 59, 7473.
(34) A. D. Yoffe. Adv. Phys. 1993, 42, 173.
(35) M. E. Wozniak;A. Sen. Chem.Mater. 1992, 4, 753.
(36) Y. Wang;N. Herron. J. Phys. Chem. 1987, 91, 257.
(37) A. L. Rogach;A. Kornowski;A. Eychmuller;H.Weller;
M. Gao;S. Kirstein. J. Phys.Chem .B. 1999, 103, 3065.
(38) 周靜怡,“II-VI族半導體奈米晶體(量子點)之合成與光學性質分析”.國立交通大學,2002.
(39) 王慧中,“有機電光材料修飾之硒化鎘奈米粒子的合成及性質研究”.國立中央大學,1994.
(40) C. B. Murray;D. J. Norris;M. G. Bawendi. J. Am. Chem. Soc.
1993, 115, 8706.
(41) Z. A. Peng;X. Peng. J. Am. Chem. Soc. 2001, 123, 183.
(42) W. W. Yu;X. G. Peng. Angew. Chem. Int. Ed. 2002, 41, 13.
(43) L. Spanhel;M. Haase;H. Weller;A. Henglein. J. Am.
Chem. Soc. 1987, 109, 5649.
(44) M. Moffitt;A. Eisenberg . Chem. Mater. 1995, 7, 1178.
(45) S. S. Narayanan;S. K. Pal. J. Phys. Chem. B. 2006, 110, 24403.
(46) T. Torimoto;H. Kontani;Y. Shibutani;S. Kuwabata;T. Sakata;H. Mori;H. Yoneyama. J. Phys. Chem. B. 2001.105,6838.
(47) H. Matsumoto;T. Sakata;H. Mori;H. Yoneyama. J. Phys. Chem.
1996, 100, 13781.
(48) A. Henglein. Ber.Bunsen-Ges. Phys. Chem. 1982, 86,301.
(49) G. Nelson;J. Chandrashekar;M. A. Hoon;L. Feng;G. Zhao
;N. J. P. Ryba;C. S. Zuker. Nature. 2002, 416, 199.
(50) 張瑋玲碩士論文“用電化學脈衝還原製作奈米金屬顆粒”長庚大學
(51) P. J .F. Harris. “Philosophial Magacine”. 2004, 84, 29, 3159.
(52) D. Q. Yang;E. Sacher. Chem.Mater. 2006, 18, 1811.
(53) Y . Masumoto,;K. Kawabata,;T. Kawazone, Phys. Rev. B.
1995, 52, 7834.
(54) B. O. Dabbousi;M. G. Bawendi;O. Onitsuka;M. F. Rubner.
Appl. Phys. Lett. 1995, 66, 1316.
(55) H. Noglik;W. J. Pietro. Chem .Mater.1995, 7, 1333.
(56) L. Spanhel;M. A. Anderson;J. Am. Chem. Soc. 1991, 113,
2826.
(57) Y. Zhang;N. Raman;J. K. Bailey;C. J. Brinkr;J. Phys. Chem.
1992, 92, 9098.
(58) Y. Golan;E. T. Ovanesyan;Y. Manassen;L. Margulis:G.
Hodes;I. Rubinstein;E. G. Bithell;J. L. Hutchison. Surf. Sci. 1996, 350, 277.
(59) Y. Golan;L. Margulis;G. Hodes;I. Rubinstein;J. L.Hutchinson.
Surf. Sci. 1994, 311, L633.
(60) G. S. Hsiao;M. G. Anderson;S. Gorer;D. Harris;R. M. Penner.
(61) M. A. Anderson;S. Gorer;R. M. Penner. J. Phys. Chem. B.
1997, 101, 5895.
(62) S. Gorer;R. M. Penner. J. Phys. Chem. B. 1999, 103, 5750.
(63) R. M. Penner. Acc. Chem. Res. 2000, 33, 78.
(64) S. Gorer;J. A. Ganske;J. C. Hemminger;R. M. Penner. J. Am.
Chem. Soc. 1998, 120, 9584.
(65) Q. Li;J. T. Newberg;E. C. Walter;J. C. Hemminger; R. M.
Penner. Nano Letters. 2004, Vol.4, No.2. 277
(66) Q. Li;E. C. Walter;W. E. van der Veer;B. J. Murray;J. T.
Newberg; E. W. Bohannan;J. A. Switzer;J. C. Hemminger;
R. M. Penner. J. Phys. Chem. B. 2005, 109, 3169.
(67) Q. G. Li;R. M. Penner. Nano Letters. 2005, Vol.5, No.9
1720.
(68) B. J. Murray;Q. Li;J. T. Newberg;E. J. Menke;J. C.Hemminger
R. M. Penner. Nano.Letrters. 2005, Vol. 5, No.11, 2319.
(69) M. Campagna;R. Rosei. “Photoemission and Adsorption Spectroscopy of Solid and Interfaces with Synchrotron Radiation”,North-Holland.1990.