簡易檢索 / 詳目顯示

研究生: 陳志昌
Chen, Chih-Chang
論文名稱: 以競爭性學習法則為基礎之多通道棘波分類電路設計
Multi-Channel Spike Sorting Circuits Based on Competitive Learning Algorithm
指導教授: 黃文吉
Hwang, Wen-Jyi
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 棘波分類棘波偵測特徵擷取競爭性學習法則特殊應用積體電路
DOI URL: https://doi.org/10.6345/NTNU202202896
論文種類: 學術論文
相關次數: 點閱:118下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究的目的在於設計並合成出可以植入於腦部內的植入式多通道棘波分類電路,提出的電路架構能夠處理多通道的腦波資料,所支援的功能包含棘波偵測、特徵擷取以及棘波分類,並具有低面積、低功耗的優勢以及良好的分類效果。根據植入生物體內的需求,電路的面積及功耗都是需要著重考量的部分,因為完成後的晶片會接觸到大腦,面積如果過大會壓迫到腦部,而功耗如果太高會導致晶片溫度過高而傷害到大腦,造成腦神經或是細胞組織受損。

    本研究所提出的架構是基於NEO演算法則做為棘波偵測器和Peak Detection and Area Computation(PDAC)演算法做為特徵擷取器,並使用非監督式學習演算法Competitive Learning透過特徵資料做學習,學習完之後交給Nearest Neighbor Classifier做棘波分類使用。在架構設計上透過運算單元的共享,並將64通道的棘波分類系統電路架構於ASIC Flow上實作,使用90nm製程做電路的實現,並於電路設計中導入Clock Gating技術來降低電路動態功耗,完成低面積、低功耗的多通道棘波分類電路。

    最後於論文後方與其他現有的架構做比較,證明以競爭性學習法則為基礎的棘波分類系統有著良好的面積及功耗表現,且具有不錯的分類效果。

    中文摘要 i 致謝 ii 目錄 iii 表目錄 iv 圖目錄 v 第一章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的 9 第三節 全文架構 10 第二章 演算法介紹 11 第一節 棘波偵測演算法 11 第二節 特徵擷取演算法 13 第三節 棘波分類演算法 16 第三章 電路架構與設計 19 第一節 系統之整體架構 19 第二節 Spike Detection Circuit - NEO 21 第三節 Spike Buffer 23 第四節 Feature Extraction Circuit - PDAC 25 第五節 Feature Extraction Buffer 27 第六節 Training and Classification Circuit 28 第一項 Winner Selection Unit 29 第二項 Memory Unit 32 第三項 Winner Update Unit 35 第四項 Controller與電路運作 37 第七節 Clock Gating 省電技術 39 第四章 實驗數據 42 第一節 系統效能之分析 42 第二節 開發環境 44 第三節 電路規格分析 46 第四節 與其他現有架構比較 52 第五節 演算法的分類效果分析 54 第五章 結論 59 參考文獻 60

    [1] P. Mitra and H. Bokil, "Observed Brain Dynamics," Oxford University Press, pp. 257-270, 2007.
    [2] S. Gibson, J. W. Judy, and D. Markovic, "Spike Sorting: The first step in decoding the brain," IEEE Signal Processing Magazine, pp. 124-143, January 2012.
    [3] I.T. Jolliffe, "Principal Component Analysis, 2nd ed," Springer-Verlag New York, 2002.
    [4] T.-C. Chen, W.-T. Liu and L.-G. Chen, "VLSI architecture of leading eigenvector generation for on-chip principal component analysis spike sorting system," IEEE Engineering in Medicine and Biology Society, pp. 3192-3195, August 2008.
    [5] J. F. Kaiser, "On a simple algorithm to calculate the ‘energy’ of a signal," IEEE Acoustics, Speech, and Signal Processing, vol. 1, pp. 381-384, April 1990.
    [6] S. Mukhopadhyay and G.C. Ray, "A new interpretation of nonlinear energy operator and its efficacy in spike detection," Biomedical Engineering, vol. 45, pp. 180-187, February 1998.
    [7] R. Q. Quiroga, Z. Nadasdy and Y. Ben-Shaul, "Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering," Neural Computation, vol. 16, pp. 1661-1687, August 2004.
    [8] B. Gosselin, A.E. Ayoub, J.-F. Roy, M. Sawan, F. Lepore and D. Guitton, "A Mixed-Signal Multichip Neural Recording Interface With Bandwidth Reduction," IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, vol. 3, no. 3, pp. 129-141, 2009.
    [9] T.-C. Chen, K. Chen, Z. Yang, K. Cockerham and W.-T. Liu, "A biomedical multiprocessor SoC for closed-loop neuroprosthetic applications," IEEE Solid-State Circuits Conference, pp. 434-435, February 2009.
    [10] 陳映綸,《NEO與GHA多通道棘波分類系統之低功率電路設計》,碩士論文,國立臺灣師範大學資訊工程研究所,2015。
    [11] 張元俊,《可執行快速特徵擷取之多通道低功率分類電路設計》,碩士論文,國立臺灣師範大學資訊工程研究所,2016。
    [12] W.-J. Hwang, W.-H. Lee, S.-J. Lin, and S.-Y. Lai. "Efficient Architecture for Spike Sorting in Reconfigurable Hardware," Sensors, pp. 14860-14887, November 2013.
    [13] C.-E. Ke, "Efficient ASIC Architecture for Low-Power Multi-Channel
    Spike Sorting System," Master's thesis, National Taiwan Normal University,
    2014.
    [14] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, and C.-S. Poon, "Real-
    Time FPGA-Based Multichannel Spike Sorting Using Hebbian Eigenfilters,"
    IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 1, pp. 502-515, Dec 2011.
    [15] T. D. Sanger, "Optimal unsupervised learning in a single-layer linear
    feedforward neural network, " Neural Networks, pp. 459-473, April 1989.
    [16] S. O. Haykin, "Neural Networks and Learning Machines," 3rd edition, Prentice Hall, 2008.
    [17] Y. Zhou, T. Wu, A. Rastegarnia, C. Guan, E. Keefer, and Z. Yang. "On the robustness of EC-PC spike detection method for online neural recording," Journal of Neuroscience Methods, vol. 235, pp. 316–330, September 2014.
    [18] Y.-J. Chang, W.-J. Hwang and C.-C. Chen, "A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search," Sensors, December 2016
    [19] T. Wu, Z. Yang, "Power-efficient VLSI implementation of a feature extraction engine for spike sorting in neural recording and signal processing," In Proceedings of the IEEE International Conference on Control Automation Robotics and Vision, December 2014, pp. 7-12.
    [20] Y. Liu, J. Sheng, M. C. Herbordt, "A Hardware Design for In Brain Neural Spike Sorting," IEEE High Performance Extreme Computing Conference (HPEC), 2016.
    [21] M. Chae, W. Liu, Z. Yang, T. Chen, J. Kim, M. Sivaprakasam and M. Yuce, "A 128-Channel 6mW Wireless Neural Recording IC with On-the-Fly Spike Sorting and UWB Tansmitter," IEEE Solid-State Circuits Conference, pp. 146-603, 2008.
    [22] L. S. Smith, N. Mtetwa, "A tool for synthesizing spike trains with realistic interference," Journal of Neuroscience Methods, vol. 159, pp. 170-180, January 2007.
    [23] R. Q. Quiroga, Z. Nadasdy, Y. Ben-Shaul, "Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering," NEURAL COMPUTATION, vol. 16, no. 8, pp. 1661-1687, August 2004.

    下載圖示
    QR CODE