簡易檢索 / 詳目顯示

研究生: 許培倫
Hsu, Pei-Lun
論文名稱: 鈣鈦礦量子點白光共振腔發光二極體於生醫檢測之應用
Perovskite quantum dots resonant cavity white-light LEDs and its application of biophotonic inspections
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 48
中文關鍵詞: 高溫注入合成法鈣鈦礦量子點高反射鏡白光共振腔發光二極體
英文關鍵詞: hot injection, perovskite quantum dot, high reflection filter, resonant cavity white-light LEDs
DOI URL: http://doi.org/10.6345/NTNU201900714
論文種類: 學術論文
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用高溫注入法合成鈣鈦礦量子點(perovskite quantum)作為發光層,再結合上下布拉格高反射鏡,形成垂直共振型光二極體結構。透過365 nm 發光二極體作為激發光源,照射鈣鈦礦量子點,藉由共振腔所產生的珀塞爾效應(Purcell effect),使鈣鈦礦量子點光致發光光譜的半高寬縮減。研究主要分為兩部分:第一,調控鈣鈦礦前驅物反應物值比例,產生藍、綠、紅溶液。有系統的研究藍、綠、紅鈣鈦礦量子點相關之材料及光學分析,並設計與製作所對應之不同發光波段的布拉格高反射鏡高反射鏡,並分析其穿透吸收光譜。第二,將三原色鈣鈦礦量子點滴至高反射鏡上,再將另一片高反射鏡蓋上,在下面放置365 nm 發光二極體,激發出鈣鈦礦量子點的螢光,光纖可以收到白光共振腔發光二極體的光譜,並將該光譜激發螢光蛋白質,用來檢測癌細胞的相關應用。最後,我們預期本研究結合藍、綠、紅鈣鈦礦量子點之垂直共振型光二極體結構,將可作爲未來新穎白光元件之應用。

    In this experiment, a high-temperature injection method was used to synthesize a perovskite quantum dot (perovskite quantum) as a light-emitting layer, and a vertical resonant-type photodiode structure was formed by combining upper and lower Distributed Bragg Reflector. The 365 nm LED is used as an excitation source to illuminate the perovskite quantum dots, and the half-height of the perovskite quantum dot photoluminescence spectrum is reduced by the Purcell effect generated by the resonant cavity. The research is mainly divided into two parts: First, the ratio of the reactant values of the perovskite precursor is regulated to produce blue, green and red solutions. Systematic study of blue, green, and red perovskite quantum dot related materials and optical analysis, and design and fabrication of different high-intensity Bragg high-reflector high-reflection mirrors, and analysis of their breakthrough absorption spectra. Second, the three primary color perovskite quantum dots are dropped onto the high-reflection mirror, and another high-reflection mirror is placed thereon, and a 365 nm light-emitting diode is placed underneath to excite the fluorescence of the perovskite quantum dots, and the optical fiber can be received. The white light cavity illuminates the spectrum of the diode and excites the spectrum to detect fluorescent proteins for use in detecting cancer cells. Finally, we expect this study to combine the vertical resonance type photodiode structure of blue, green, and red perovskite quantum dots, which will serve as a future novel white light component.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章緒論 1 1.1 前言 1 1.2研究動機與目的 1 1.3論文架構 2 第二章 基本原理及文獻回顧 3 2.1鈣鈦礦介紹 3 2.2 光致發光介紹與原理 7 2.3薄膜光學特性 8 2.4 法布理-布洛共振腔(Fabry-Perot Cavity) 15 第三章實驗方法及使用材料 17 3.1實驗流程 17 3.2 鈣鈦礦量子點合成方法 17 3.3 設計高反射鏡與實驗參數 20 3.4 光譜量測架構 22 3.5 積分球-穿透量測系統 25 3.6實驗耗材 26 第四章 結果與討論 27 4.1 CsPbX3 (X=Clx/Brx、Brx、Ix/Brx)3光致發光分析 27 4.2 CsPbX3 (X=Clx/Brx、Brx、Ix/Brx)吸收分析 28 4.3 CsPbX 3 (X=Clx/Brx、Brx、Ix/Brx)3 X光繞射分析 29 4.4 高反射鏡分析 30 4.5高反射鏡與單色鈣鈦礦量子點結合分析 35 4.6 高反射鏡與三色鈣鈦礦量子點結合分析 37 4.7 螢光蛋白質光譜分析 40 第五章 結論與未來展望 46 參考文獻 47

    [1] Wenk, Hans-Rudolf; Bulakh, Andrei (2004). Minerals: Their Constitution and Origin. New York, NY: Cambridge University Press. ISBN 978-0-521-52958-7
    [2] Ashoori, R. C. (1996). "Electrons in artificial atoms". Nature. Bibcode:1996. doi:10.1038/379413a0
    [3] Kastner, M. A. (1993). "Artificial Atoms". Physics Today. Bibcode:1993. doi:10.1063/1.881393.
    [4] Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts. doi: 10.1039/C6CE02314B
    [5] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "photochemistry".
    [6] Sheppard, C.J.R. (1995). "Approximate calculation of the reflection coefficient from a stratified medium". doi:10.1088/0963-9659/4/5/018.
    [7] Osting, B. (2012). "Bragg structure and the first spectral gap". Applied Mathematics Letters. 25 (11): 1926–1930. doi:10.1016/j.aml.2012.03.002.
    [8] Sudipta Seth , Anunay Samanta , “A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition , ” Scientific Reports , DOI: 10.1038/srep37693 (2016)
    [9] A. Feldhoff , M. Arnold , J. Martynczuk ,“The solegel synthesis of perovskites by an EDTA/citrate complexing method involves nanoscale solid state reactions, ” Solid State Sciences, doi:10.1016/j (2008)
    [10] Dan Wang , Dan Wu, Di Dong , Wei Chen, “Polarized emission from CsPbX3 perovskite quantum dots, ” Nanoscale , DOI: 10.1039/c6nr01915c(2016)
    [11] R. M. PITICESCU , P. VILARNHO “Hydrothermal synthesis of perovskite based materials for microelectronic applications, ” Advanced materials ,Vol. 8, No. 2 (2006)
    [12] Loredana Protesescu , Sergii Yakunin , Maryna I. Bodnarchuk, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, ” Nano Let , DOI: 10.1021/nl5048779 (2015)
    [13] Bridgemanite on Mindat.org.
    [14] 李正中。薄膜光學與鍍膜技術。第八版。藝軒圖書出版社。新北市。2016
    [15] https://www.x-mol.com/news/13131
    [16] http://news.sciencenet.cn/htmlpaper/201762713355319044352.shtm
    [17] https://www.renishaw.com.tw/tw/photoluminescence-explained--25809

    無法下載圖示 本全文未授權公開
    QR CODE