簡易檢索 / 詳目顯示

研究生: 趙偉迪
Wei-Di Chao
論文名稱: 氧化鋅奈米線應用於發光二極體之研製
Development of light-emitting diodes using well-aligned ZnO nanowire
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 204
中文關鍵詞: 氧化鋅奈米線發光二極體水熱法氧化鋅鋁薄膜P型氮化鎵
英文關鍵詞: ZnO nanowire, Light-emitting diode, Hydrothermal method, AZO, P-GaN
論文種類: 學術論文
相關次數: 點閱:231下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發光二極體被視為未來主要的照明光源,高功率發光二極體於技術上屢有突破,但現階段發光效率的不足,使發光二極體無法取代傳統光源作為照明燈源的主流,故發光二極體發光效率的提升,是目前技術發展的重點之一。過去的研究指出,將奈米線應用於發光二極體的結構製作,能有效提升其發光強度;而在各式成長奈米線的方法中,以水熱法製備之奈米線具有高品質順向成長與製程簡易的優點,故本論文將採用此法成長氧化鋅奈米線,並以射頻濺鍍法沉積N型氧化鋅鋁薄膜,P型材料則選用氧化鋅與氮化鎵,藉以製備氧化鋅奈米線發光二極體,進行其特性之研究。
     在奈米線的部份,藉由水熱法成功製備氧化鋅奈米線,直徑34 nm-200 nm,長度1 um-2 um,密度4 NWs/um2-68.23 NWs/um2。EDS分析顯示氧化鋅奈米線的鋅、氧比接近50 % : 50 %。XRD分析僅於34度存在繞射峰值,亦即於(002)面有較強之繞射訊號。PL顯示奈米線的發光峰值位於378 nm,並具有微弱之可見光放射。從HRTEM可觀察到,奈米線內部的晶格結構良好,晶格條紋間距為0.2629 nm,証實奈米線為C軸取向成長。
      N型氧化鋅鋁薄膜部份,其最佳電阻率為3×10^(-3) Ω-cm,載子濃度為1.72×10^21 cm^(-3),載子遷移率為0.0715 cm2/V-s,於可見光波段的平均穿透率大於80 %,於波長450 nm之最佳穿透率為87 %,於波長380 nm之最佳穿透率為77 %。
      P型氧化鋅部份,分別使用氧化鋅及純鋅靶材,嘗試藉由製程氣體氧/氬比例的控制,用以製備P型氧化鋅,但目前薄膜均呈現N型半導體電性。未來將使用摻雜P2O5之氧化鋅靶材,繼續P型氧化鋅薄膜之試驗。
      發光二極體部份,目前已於P型氮化鎵(鎂摻雜,載子濃度約為10^17 cm^(-3))薄膜上,成功製備氧化鋅奈米線/N型氧化鋅鋁薄膜結構,並完成發光二極體之晶粒製作,其尺寸為300 um×300 um。在約大於15 V的操作電壓下,以長工作距離顯微鏡可觀察到,發光二極體晶粒的部份區域放射出藍光,且發光強度隨外加電壓而增加。發光二極體之I-V曲線顯示其串聯電阻相當大,未來將以快速熱退火進行後處理,以期提升其性能,並檢測發光頻譜等特性。

    Light emitting diode (LED) is considered as the major next-generation luminescence technology, but nowadays insufficient light efficiency of high power LED limits its application for illumination lighting. Some research group have developed nanowrie-inserted LED structure, and the EL intensity shows that the novel LED structure can improve light efficiency effectively. ZnO nanowires grown
    by hydrothermal method have excellent properties such as single crystal, vertical alignment, broad area growth and simple process. Thus in this study hydrothermal method is adopted to fabricate ZnO nanowires, N-type material of LED is aluminum-doped ZnO film (AZO) deposited by RF sputtering, and P-type materials are ZnO and Mg-doped GaN film. Finally, the characteristics of N-type AZO/ZnO
    nanowire/P-type ZnO or P-type GaN structure LED will be studied.

    The ZnO nanowries grown by hydrothermal method are 34 nm-200 nm in diameter, 1 um-2 um in length, and 4 NWs/um2-68.23 NWs/um2 in density. EDS shows the atomic percentage of Zn and O is closed to 50 % : 50 %. XRD peak locates at 34° and shows (002) preferred crystallinity. PL indicates the luminescence peak of nanowries appears at 378 nm, and weak visible emission is observed. HRTEM image shows good crystal structure, and the spacing of lattice fringe is
    0.2629 nm.

    For AZO film, the optimal resistivity is 3×10^(-3) Ω-cm, carrier concentration is 1.72×10^21 cm^(-3) and mobility is 0.0715 cm2/V-s. The average transmittance of visible light is above 80 %, the optimal transmittance at 450 nm is 87 %, and the optimal transmittance at 380 nm is 77 %.

    ZnO and pure zinc targets are used to deposit P-type ZnO by O2/Ar flow controlling, but unfortunately all fabricated samples still show N-type properties. P2O5-doped ZnO target will be used to fabricated P-type ZnO film continuously.

    For LED study, ZnO nanowrie/N-type AZO film have been fabricated on Mg-doped P-GaN film (carrier concentration is about 1017 cm-3), the size of LED die is 300 μm × 300 μm. Blue emission is observed from partial area of LED die through long-distance microscope when forward-bias is above 15-20 V, and voltage raise leads to increasing of light intensity. In the next step, current-voltage relation and
    electroluminescence (EL) spectrum will be examined.

    摘要 ................................. I 總目錄 ................................ V 圖目錄 ................................ VIII 表目錄 ................................ XVIII 第一章 序論 ........................... 1 1.1 前言 ............................. 1 1.2 發光二極體之簡介 .................. 5 1.2.1 發光二極體之原理 .............. 5 1.2.2 發光二極體之發光效率 ........... 7 1.2.3 同質與異質結構發光二極體 ....... 9 1.3 氧化鋅材料 ........................ 18 1.3.1 氧化鋅之材料特性 .............. 18 1.3.2 氧化鋅之發光機制 .............. 18 1.4 量子侷限效應 ...................... 25 第二章 文獻回顧 ....................... 33 2.1 氧化鋅奈米線/奈米柱之製備 .......... 33 2.1.1 VLS與VS成長機制 .............. 33 2.1.2 氣相沉積法 ................... 36 2.1.3 有機金屬化學氣相沉積法 ......... 38 2.1.4 電漿輔助化學氣相沉積法 ......... 40 2.1.5 脈衝雷射蒸鍍法 ................ 41 2.1.6 電化學沉積法 .................. 41 2.1.7 聲化學法 ..................... 44 2.1.8 水熱法 ....................... 45 2.2 氧化鋅奈米線/奈米柱發光二極體之製作 .. 83 2.2.1 有機金屬化學氣相沉積法 ......... 83 2.2.2 化學氣相沉積法 ................ 86 2.2.3 氣相傳輸法 .................... 87 2.2.4 電化學沉積法 .................. 87 2.2.5 水熱法 ....................... 89 2.3 研究動機與目的 .................... 114 第三章 實驗設計與規劃 .................. 115 3.1 元件設計 ......................... 115 3.1.1 發光二極體結構設計 ............ 115 3.1.2 光罩設計 ..................... 117 3.2 實驗規劃與製程 .................... 121 3.2.1 氧化鋅奈米線之製備 ............ 121 3.2.2 同質結構氧化鋅奈米線發光二極體之製作 . 122 3.2.3 異質結構氧化鋅奈米線發光二極體之製作 . 124 3.3 實驗設備 ......................... 132 第四章 實驗結果與探討 .................. 142 4.1 氧化鋅奈米線 ...................... 142 4.1.1 溶液濃度對氧化鋅奈米線之影響 .... 142 4.1.2 反應時間對氧化鋅奈米線形貌之影響 . 155 4.1.3 X光繞射分析 ................... 161 4.1.4 光激發光螢光頻譜分析 ........... 166 4.1.5 穿透式電子顯微鏡分析 ........... 169 4.2 氧化鋅鋁薄膜 ...................... 171 4.2.1 靶材距離對氧化鋅鋁薄膜電阻值之影響 .. 171 4.2.2 氣體流量對氧化鋅鋁薄膜電阻值之影響 .. 172 4.2.3 濺鍍功率對氧化鋅鋁薄膜電阻值之影響 .. 173 4.2.4 快速熱退火對氧化鋅鋁電阻值之影響 .... 173 4.2.5 濺鍍參數對氧化鋅鋁薄膜穿透率之影響 .. 174 4.3 P型氧化鋅薄膜 ......................... 184 4.4 氧化鋅奈米線異質結構發光二極體之製作 ..... 187 第五章 結論與未來展望 ...................... 194 5.1 結論 ................................. 194 5.2 未來展望 ............................. 196 參考文獻 .................................. 197

    參考文獻
    [1] T. Mukai, M. Yamda and S. Nakamura, Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes, Japanese Journal of Applied Physics, Vol. 38, pp. 3976-3981(1999)
    [2] 林明德、戴光佑, 照明光源與LED發展趨勢, 工業材料雜誌, 266期, pp. 80-86 (2009)
    [3] S. O. Kasap, Optoelectronics and photonics: principles and practices, Pearson (2001)
    [4] E. F. Schubert, Light-emitting diode, Cambridge (2003)
    [5] 陳建隆, 發光二極體之原理與製程, 全華圖書股份有限公司 (2008)
    [6] D. Hull, Introduction to dislocations, Oxford (1975)
    [7] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang and S. J. Park, UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radio frequency sputtering, Advanced Materials, Vol. 18, pp. 2720-2724 (2006)
    [8] P. X. Gao and Z. L. Wanga, Nanoarchitectures of semiconducting and piezoelectric zinc oxide, Journal of Applied Physics, Vol. 97, 044304 (2005)
    [9] R. A. Swalin, Thermodynamics of Solids, John Wiley & Sons, pp. 335 (1972)
    [10] S. Kohiki, M. Nishitani and T. Wada, Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms, Journal of Applied Physics, Vol. 75, pp. 2069-2072 (2005)
    [11] D. C. Reynolds, D. C. Look and B. Jogai, Optically pumped ultraviolet lasing from ZnO, Solid State Communications, Vol. 99, pp. 873-875 (1996)
    [12] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics, Vol. 79, pp. 7983-7990 (1996)
    [13] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters, Vol. 68, pp. 403-405 (1996)
    [14] A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation, Journal of Physical Chemistry B, Vol. 104, pp. 1715-1273 (2000)
    [15] B. Lin and Z. Fu, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters, Vol. 79, pp. 943-945 (2001)
    [16] P. N. Prasad, Nanophotonics, Wiley Interscience (2004)
    [17] A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, Journal of Physical Chemistry, Vol. 100, pp. 13226-13239 (1996)
    [18] W. I. Park, G. C. Yi, M. Kim and S. J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures, Advanced Materials, Vol. 15, pp. 526-529 (2003)
    [19] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang and K. S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium, Nano Letters, Vol. 4, pp. 1059-1062 (2004)
    [20] S. R. Hejazi, H. R. M. Hosseini, A diffusion-controlled kinetic model for growth of Au-catalyzed ZnO nanorods: theory and experiment, Journal of Crystal Growth, Vol. 309, pp. 70-75 (2007)
    [21] S. Y. Li, C. Y. Lee and T. Y. Tseng, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process, Journal of Crystal Growth, Vol. 247, pp. 357-362 (2003)
    [22] C. J. Lee, T. J. Lee, S. C. Lyu and Y. Zhang, Field emission from well-aligned zinc oxide nanowires grown at low temperature, Applied Physics Letters, Vol. 81, No. 19, pp. 3648-3650 (2002)
    [23] Y. Ding, P. X. Gao and Z. L. Wang, Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: A case of Sn/ZnO, Journal of American Chemical Society, Vol. 126, pp. 2066-2072 (2004)
    [24] M. S. Kumar, T. Y. Kim, J. Y. Kim, E. K. Suh and K. S. Nahm, Structural and optical properties of ZnO nanowires synthesized with different catalysts and substrate pre-treatments, Physica Status Solidi (c), Vol. 1, pp. 2554-2558 (2004)
    [25] S. R. Hejazi, H. R. M. Hosseini and M. S. Ghamsari, The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vaporliquidsolid (VLS) mechanism, Journal of Alloys and Compounds, Vol. 455, pp. 353-357 (2008)
    [26] J. Yang, D. Wang, L. Yang, Y. Zhang, G. Xing, J. Lang, H. Fan, M. Gaoa and Y. Wang, Effects of supply time of Ar gas current on structural properties of Au-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process, Journal of Alloys and Compounds, Vol. 450, pp. 508-511 (2008)
    [27] W. Wang, C. J. Summers and Z. L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays, Nano Letters, Vol. 4, pp. 423-426 (2004)
    [28] A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm and Y. B. Hahn, Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism: Structural and optical properties, Journal of Crystal Growth, Vol. 282, pp. 131-136 (2005)
    [29] S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I. T. Han, J. H. Ha, J. P. Hong, D. J. Kang and J. M. Kim, Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer, Nanotechnology, Vol. 19, 235601 (2008)
    [30] S. L. Mensah, V. K. Kayastha, I. N. Ivanov, D. B. Geohegan and Y. K. Yap, Formation of single crystalline ZnO nanotubes without catalysts and templates, Vol. 90, 113108 (2007)
    [31] A. Umar, S. H. Lim, E. K. Suh and Y. B. Hahn, Ultraviolet-emitting javelin-like ZnO nanorods by thermal evaporation: Growth mechanism, structural and optical properties, Chemical Physics Letters, Vol. 440, pp. 110-115 (2007)
    [32] Z. W. Pan, Z. R. Dai and Z. L. Wang, Nanobelts of semiconducting oxides, Science, Vol. 291, pp. 1947-1949 (2001)
    [33] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Catalytic growth of Zinc oxide nanowires by vapor transport, Advanced Materials, Vol. 13, pp. 113-116 (2001)
    [34] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Roomtemperature ultraviolet nanowire nanolasers, Science, Vol. 292, pp. 1897-1899 (2001)
    [35] M. Satoh, N. Tanaka, Y. Ueda, S. Ohshio and H. Saitoh, Epitaxial growth of Zinc oxide whiskers by chemical-vapor deposition under atmospheric pressure, Japan Journal of Applied Physics, Vol. 38, pp. L586-L589 (1999)
    [36] J. J. Wu and S. C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Advanced Materials, Vol. 14, No. 3, pp. 215-218 (2002)
    [37] H. Tang, L. Zhu, Z. Ye, H. He, Y. Zhang, M. Zhi, F. Yang, Z. Yang and B. Zhao, Synthesis of two kinds of ZnO nanostructures by vapor phase method, Materials Letters, Vol. 61, pp. 1170-1173 (2007)
    [38] K. S. Kim and H. W. Kim, Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition, Physica B, Vol. 328, pp. 368-371 (2003)
    [39] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu and Y. Lu, Selective MOCVD growth of ZnO nanotips, IEEE Transactions on Nanotechnology, Vol. 2, No. 1, pp. 50-54 (2003)
    [40] D. J. Lee, J. Y. Park, Y. S. Yun, Y. S. Hong, J. H. Moon, B. T. Lee and S. S. Kim, Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates, Journal of Crystal Growth, Vol. 276, pp. 458-464 (2005)
    [41] J. R. Wang, Z. Z. Ye, J. Y. Huang, Q. B. Ma, X. Q. Gu, H. P. He, L. P. Zhu and J. G. Lu, ZnMgO nanorod arrays grown by metal-organic chemical vapor deposition, Materials Letters, Vol. 62, pp. 1263-1266 (2008)
    [42] X. Liu, X. Wu, H. Cao and R. P. H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, Journal of Applied Physics, Vol. 95, pp. 3141-3147 (2004)
    [43] M. Yan, H. T. Zhang, E. J. Widjaja and R. P. H. Chang, Self-assembly of well-aligned gallium-doped zinc oxide nanorods, Journal of Applied Physics, Vol. 94, No. 8, pp. 5240-5246 (2003)
    [44] M. Guoa, C. Y. Yang, M. Zhang, Y. J. Zhang, T. Maa, X. Wang and X. D. Wang, Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays, Electrochimica Acta, Vol. 53, pp. 4633-4641 (2008)
    [45] L. Xu, Q. Liao, J. Zhang, X. Ai and D. Xu, Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods, Journal of Physical Chemistry C, Vol. 111, pp. 4549-4552 (2007)
    [46] S. H. Jung, E. Oh, K. H. Lee, W. Park and S. H. Jeong, A sonochemical method for fabricating aligned ZnO nanorods, Advanced Materials, Vol. 19, pp. 749-753 (2007)
    [47] L. Spanhel and M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society, Vol. 113, pp. 2826-2833 (1991)
    [48] C. Pacholski, A. Kornowski and H. Weller, Self-assembly of ZnO: from nanodots to nanorods, Angewandte Chemie International Edition, Vol. 41, pp. 1188-1191 (2002)
    [49] B. Liu and H. C. Zeng, Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures, Langmuir, Vol. 20, pp. 4196-4204 (2004)
    [50] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu and D. Que, Low temperature synthesis of flowerlike ZnO nanostructures by Cetyltrimethylammonium Bromide-assisted hydrothermal process, Journal of Physical Chemistry B, Vol. 108, pp. 3955-3958 (2004)
    [51] L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, Journal of Physical Chemistry B, Vol. 105, pp. 3350-3352 (2001)
    [52] L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes, Chemistry of Materials, Vol. 13, pp. 4395-4398 (2001)
    [53] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solution, Advanced Materials, Vol. 15, pp. 464-466 (2003)
    [54] A. Sugunan, H. C. Warad, M. Bomanb and J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine, Journal of Sol-Gel Science and Technology, Vol. 39, pp. 49-56 (2005)
    [55] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays, Angewandet Chemie, Vol. 42, pp. 3031-3034 (2003)
    [56] Y. Tak and K. Yong, Controlled growth of well-aligned ZnO nanorod array using a novel solution method, Journal of Physical Chemistry B, Vol. 109, pp. 19263-19269 (2005)
    [57] D. Wu , M. Yanga, Z. Huang, G. Yin, X. Liao, Y. Kang, X. Chen and H. Wang, Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution, Journal of Colloid and Interface Science, Vol. 330, pp. 380-385 (2009)
    [58] W. I. Park and G. C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Advanced Materials, Vol. 16, pp. 87-90 (2004)
    [59] M. C. Jeong, B. Y Oh, M. H. Ham and J. M. Myoung, Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes, Applied Physics Letters, Vol. 88, 202105 (2006)
    [60] M. C. Jeong, B. Y. Oh, M. H. Ham and J. M. Myoung, ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diode, Small, Vol. 3, pp. 568-572 (2007)
    [61] S. H. Park, S. H. Kim and S. W. Han, Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications, Nanotechnology, Vol. 18, 055608 (2007)
    [62] D. C. Kim, W. S. Han, H. K. Cho, B. H. Kong, and H. S. Kim, Multidimensional ZnO light-emitting diode structures grown by metal organic chemical vapor deposition on p-Si, Applied Physics Letters, Vol. 91, 231901 (2007)
    [63] C. Y. Chang, F. C. Tsao, C. J. Pan and G. C. Chi, Electroluminescence from ZnO nanowire/polymer composite p-n junction, Applied Physics Letters, Vol. 88, 173503 (2006)
    [64] B. Linga, X. W. Suna, J. L. Zhaoa, S. T. Tanb, Z. L. Dongc, Y. Yanga, H. Y. Yua and K. C. Qi, Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode, Physica E, Vol. 41 (2008)
    [65] R. Konenkamp, R. C. Word and C. Schlegel, Vertical nanowire lightemitting diode, Applied Physics Letters, Vol. 85, pp. 6004-6006 (2007)
    [66] H. Guoa, J.g Zhoua and Z. Lin, ZnO nanorod light-emitting diodes fabricated by electrochemical approaches, Electrochemistry Communications, Vol. 10, pp. 146-150 (2008)
    [67] A. Nadarajah, R. C. Word, J. Meiss and R. Knenkamp, Flexible inorganic nanowire light-emitting diode, Nano Letters, Vol. 8, pp.534-537 (2008)
    [68] K. H. Tam, A. M. C. Ng, Y. H. Leungt, A. B. Djurisic, W. K. Chan , and S. Gwo, ZnO nanorods by hydrothermal method for ZnO/GaN LEDs, IEEE, Optoelectronic and Microelectronic Materials and Devices, 2006 Conference on, pp. 109-112 (2006)
    [69] H. Sun, Q. F. Zhang and J. L. Wu, Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure, Nanotechnology, Vol. 17, pp. 2271-2274 (2006)
    [70] E. Lai, W. Kim and P. Yang, Vertical nanowire array-based light emitting diodes, Nano Research, Vol. 1, pp. 123-128 (2008)
    [71] H. Sun, Q. Zhang, J. Zhang, T. Deng and J. Wu, Electroluminescence from ZnO nanowires with a p-ZnO film/n-ZnO nanowire homojunction, Applied Physics B: Lasers and Optics, Vol. 90, pp. 543-546 (2008)
    [72] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer and R. T. Williams, Control of p- and n-type conductivity in sputter deposition of undoped ZnO, Applied Physics Letters, Vol. 80, pp. 1195-1197 (2002)
    [73] S. H. Jeong, J. W. Lee, S. B. Lee, J. H. Boo, Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties, Thin Solid Films, Vol. 435, pp. 78-82 (2003)
    [74] T. H. Moon, M. C. Jeong, B. Y. Oh, M. H. Ham, M. H. Jeun, W. Y. Lee and J. M. Myoung, Chemical surface passivation of HfO2 films in a ZnO nanowire transistor, Nanotechnology, Vol. 17, pp. 2116-2121 (2006)
    [75] H. K. Kim, T. Y. Seong, K. K. Kim, S. J. Park, Y. S. Yoon and I. Adesida, Mechanism of nonalloyed Al ohmic contacts to n-Type ZnO:Al epitaxial layer, Japanese Journal of Applied Physics, Vol. 43, pp. 976-979 (2004)
    [76] K. Ip, G. T. Thalera, H. Yanga, S. Y. Hana, Y. Lia, D. P. Nortona, S. J. Peartona, S. Jang and F. Ren, Contacts to ZnO, Journal of Crystal Growth, Vol. 287, pp. 149-156 (2006)
    [77] B. Liu and H. C. Zeng, Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, Journal of American Chemical Society, Vol. 125, pp. 4430-4431 (2003)
    [78] 鄭信民、林麗娟, X光繞射應用簡介, 工業材料雜誌, 181期, pp. 100-108 (2002)
    [79] Y. C. Chen, C. L. Cheng, S. C. Liou and Y. F. Chen, The magnetoelectric effect in Ni–Fe alloy ZnO nanorod array composites, Nanotechnology, Vol. 19, 485709 (2008)
    [80] S. H. Jeong, J. W. Lee, S. B. Lee and J. H. Boo, Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties, Thin Solid Films, Vol. 435, pp. 78-82 (2003)
    [81] K. H. Kim, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, Journal of Applied Physics, Vol. 81, pp. 7764-7772 (1997)
    [82] S. Y. Hu, Y. C. Lee, J. W. Lee, J. C. Huang, J. L. Shen and W. Water, The structural and optical properties of ZnO/Si thin films by RTA treatments, Applied Surface Science, Vol. 254, pp. 1578-1582 (2008)
    [83] R. Schaffler and H. W. Schock, High mobility ZnO:Al thin film grown by reactive DC magnetron sputtering, IEEE (1993)
    [84] T. Minami, H. Sato, H. Imamoto, Substrate temperature dependence of transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering, Japan Journal of Applied Physics, Vol. 31, pp. L 257-L 260 (1992)
    [85] 金開勝, 氧化鋅薄膜分析與發光二極體元件製作, 中華技術學院電子工程研究所, 碩士論文 (2006)

    下載圖示
    QR CODE