簡易檢索 / 詳目顯示

研究生: 張金中
論文名稱: 使用者介面設計與科技接受模式在資訊系統使用行為模式之研究-以大學課程資源網為例
A Study of User Behavior Model Based on User Interface Design and Technology Acceptance Model on Information System:A Case of University Courses Resource Website
指導教授: 戴建耘
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 175
中文關鍵詞: 科技接受模式使用者介面設計大學課程資源網
英文關鍵詞: Technology Acceptance Model (TAM), User-Interface Design, University Courses Resource Website
論文種類: 學術論文
相關次數: 點閱:285下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以使用者介面設計與科技接受模式取向建構「大學課程資源網」使用者的行為特徵模式。另一方面,就高中學生使用「大學課程資源網」的行為,探討使用者介面設計認同、科技接受程度與使用滿意度之現況與差異性分析。最後,驗證各徑路指向之顯著性。研究方法採取問卷調查法與統計分析,採用「大學課程資源網科技接受與使用者介面設計問卷」研究工具,經內部一致性信度分析與分層次因素效度分析後,針對新北市立錦和高級中學一至三年級學生,以立意抽樣方式進行調查,有效樣本共480人。最後,本研究依照研究目的和假設驗證所需,分別以描述性統計、單一樣本t檢定、獨立樣本t檢定、單因子變異數、積差相關與多元迴歸進行資料統計。
    經統計分析後得知:高中學生對於大學課程資源網的各構面題項,除了流暢度之外皆達到同意的顯著水準;差異性分析中,在三年級的學生在「知覺功能」與「使用滿意度」構面上同意程度較一年級學生高,第一類組的學生在「知覺功能」與「知覺系統支援」構面上同意程度較第三類組高,而時常使用網際網路搜尋資料的學生在「知覺功能」與「知覺有用性」同意程度高於偶爾使用的學生;各構面之間呈現高度相關,且在各路徑驗證皆符合研究假設之正向可預測性。

    This study applied User Interface Design (UID) and Technology Acceptance Model (TAM) to explore the user behavior pattern model of "University Courses Resource Website". On the other hand, the researcher caught high school student's behavior of using University Courses Resource Website for comparison analysis and present situation by user interface design self-identity, technology accept level, and use satisfaction. A path analysis approach was applied to test the hypotheses. Questionnaire survey and statistical analysis approach were employed as research method. An instrument was developed and applied as research tool named "Technology Accept and User Interface Design Questionnaire for University Course Resource Website". The internal consistency analysis and factor analysis by domains was conducted to test the reliability and validity of the research instrument. The valid 480 samples were obtained by judgment sampling from first grade to third grade students studied in New Taipei Municipal Junior High School. Lastly, the researcher applied descriptive statistic, one-sample t-test, independent sample t-test, one way ANOVA, Pearson Correlation, and multiple regressions to deal with the research data.
    The result of analysis of variance shows that all factors reached agree level significantly except "Fluency". The agreement level of the third grade students was significantly higher than that of the first grade in the factor of "Perceived
    iv
    Functionality" and "Use Satisfaction"; The agreement level of students who major in liberal art, law and commerce was significant higher than that of students who major in medical science in the factor of "Perceived Functionality" and " Perceived System Support"; The agreement level of high frequency searching information students was significantly higher than fewer frequency searching information students in the factor of "Perceived Functionality" and "Perceived Usefulness". High correlation appeared among factors and the path analysis result demonstrated that hypotheses were proved that independent variables can predict dependent variable positively.

    摘 要 i 英文摘要 iii 誌  謝 v 目  錄 vii 圖 目 錄 xii 表 目 錄 xv 第一章 緒論 1 1.1研究動機與背景 1 1.2研究目的 3 1.3研究假設 4 1.4研究範圍與限制 5 1.5名詞釋義 7 1.5.1 知覺功能(Perceived Functionality,PF) 7 1.5.2 知覺使用者介面設計(Perceived User-Interface Design,PUID) 7 1.5.3 知覺系統支援(Perceived System Support,PSS) 7 1.5.4 知覺有用(Perceived Usefulness,PU) 8 1.5.5 知覺易用(Perceived Ease of Use,PEOU) 8 1.5.6 使用態度(Attitude toward Using,ATT) 8 1.5.7 行為傾向(Behavior Intention,BI) 8 1.5.8 使用滿意度(User Satisfaction,US) 9 第二章 文獻探討 11 2.1科技接受模式 11 2.1.1 理性行為理論(Theory of Reasoned Action,TRA) 11 2.1.2 計畫行為理論(Theory of Planned Behavior,TPB) 13 2.1.3 科技接受模式(Technology Acceptance Model,TAM) 14 2.1.4 TAM-TPB整合模型(Combined-TAM-TPB,C-TAM-TPB) 16 2.1.5 分解式TPB模型(Decomposed TPB,DTPB) 17 2.1.6 第二代TAM(TAM 2) 19 2.1.7 科技接受與使用整合模型(Unified Theory of Acceptance and Use of Technology,UTAUT) 21 2.2使用者介面設計 25 2.2.1 使用者介面設計(User Interface) 25 2.2.2 使用者介面設計原則(User Interface Design Principles) 26 2.2.3 使用者中心設計(User Centered Design) 27 2.2.4 人機介面設計(Human-Computer Interface Design) 29 2.2.5 使用者介面評估(User Interface Evaluation) 29 2.3大學課程資源網 30 第三章 研究方法 33 3.1研究流程 33 3.2研究架構 35 3.3研究方法 37 3.4研究對象 39 3.5研究工具 40 3.5.1 大學課程資源網科技接受與使用者介面設計問卷內容 40 3.5.2 大學課程資源網科技接受與使用者介面設計問卷信度分析 44 3.5.3 大學課程資源網科技接受與使用者介面設計問卷效度分析 50 第四章 研究結果 57 4.1受試者基本變項分析 57 4.1.1. 性別 57 4.1.2. 年級 57 4.1.3. 類組 58 4.1.4. 每天上網時數 58 4.1.5. 使用電腦的歷史 59 4.1.6. 使用網際網路來搜尋資料的頻率 59 4.1.7. 使用網際網路搜尋資源時,遇到最大的困難 60 4.1.8. 曾經使用過大學課程網 60 4.2「大學課程資源網科技接受與使用者介面設計問卷」描述性統計分析 61 4.2.1 「PUID1」題項分析 61 4.2.2 「PUID2」題項分析 61 4.2.3 「PUID3」題項分析 62 4.2.4 「PUID4」題項分析 62 4.2.5 「PF1」題項分析 63 4.2.6 「PF2」題項分析 64 4.2.7 「PF3」題項分析 65 4.2.8 「PF4」題項分析 65 4.2.9 「PSS1」題項分析 66 4.2.10「PSS2」題項分析 67 4.2.11「PSS3」題項分析 67 4.2.12「PEOU1」題項分析 68 4.2.13「PEOU2」題項分析 69 4.2.14「PEOU3」題項分析 69 4.2.15「PEOU4」題項分析 70 4.2.16「PU1」題項分析 71 4.2.17「PU2」題項分析 71 4.2.18「PU3」題項 72 4.2.19「PU4」題項分析 73 4.2.20「ATT1」題項分析 73 4.2.21「ATT2」題項分析 74 4.2.22「ATT3」題項分析 75 4.2.23「BI1」題項分析 75 4.2.24「BI2」題項分析 76 4.2.25「BI3」題項分析 77 4.2.26「BI4」題項分析 77 4.2.27「US1」題項分析 78 4.2.28「US2」題項分析 78 4.2.29「US3」題項分析 79 4.2.30「US4」題項分析 80 4.3「大學課程資源網」現況分析 81 4.3.1. 「大學課程資源網」之知覺使用者介面設計現況分析 81 4.3.2. 「大學課程資源網」之知覺功能現況分析 83 4.3.3. 「大學課程資源網」之知覺系統支援現況分析 85 4.3.4. 「大學課程資源網」之知覺易用現況分析 86 4.3.5. 「大學課程資源網」之知覺有用現況分析 87 4.3.6. 「大學課程資源網」之使用態度現況分析 89 4.3.7. 「大學課程資源網」之行為傾向設計現況分析 90 4.3.8. 「大學課程資源網」之使用滿意度現況分析 92 4.4不同背景變項之差異分析 94 4.4.1 性別 94 4.4.2 年級 97 4.4.3 類組 101 4.4.4 每天上網時數 105 4.4.5 使用電腦的歷史 110 4.4.6 使用網際網路來搜尋資料的頻率 115 4.4.7 使用網際網路搜尋資源時,遇到最大的困難 120 4.4.8 曾經使用過大學課程網 125 4.5大學課程資源網使用者介面設計與科技接受模式徑路分析 129 4.5.1 Pearson積差相關 129 4.5.2 徑路分析 130 第五章 研究結論與建議 139 5.1研究結果 139 5.1.1. 高中學生在大學課程資源網的使用者介面設計認同達滿意程度以上 139 5.1.2. 高中學生在大學課程資源網的科技接受達同意程度以上 139 5.1.3. 高中學生使用大學課程資源網的使用者介面認同程度在「年級」、「類組」、「使用網際網路來搜尋資料的頻率」存有差異 140 5.1.4. 高中學生在大學課程資源網科技接受程度與使用滿意度分別受到「使用網際網路來搜尋資料的頻率」與「年級」影響 141 5.1.5. 使用者介面設計等外部變數在科技接受模式具影響力 141 5.1.6. 高中學生在大學課程資源網知覺功能、知覺使用者介面設計、知覺系統支援、知覺有用性與行為傾向對使用滿意度有顯著影響 142 5.2研究建議 143 5.2.1. 研究對象的選擇 143 5.2.2. 研究深度與廣度 143 5.2.3. 跨群組的不變性檢定 143 參考文獻 145 附 錄 一 大學課程資源網科技接受與使用者介面設計原始問卷 157 附 錄 二 大學課程資源網科技接受與使用者介面設計修正後問卷 171

    [1] M. J. Hannafin and K. L. Peck, The Design, Development, and Evaluation of Instructional Software, New York: Macmillan Publishing Company, 1988.
    [2] 李德竹,”資訊素養的意義、內涵與演變”,圖書與資訊學刊,1-25,35,2000。
    [3] 張明輝,學校經營與管理研究:前瞻、整合、學習與革新,台北市:學富,2002。
    [4] F. D. Davis, A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results, Doctoral Dissertation, MIT Sloan School of Management, Cambridge: MA, 1986.
    [5] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User acceptance of computer technology: A comparison of two theoretical models,” Management Science., vol. 35, pp. 982-1002, 1989.
    [6] P. Legris, J. Ingham, and P. Collerette, “Why do people use information technology? a critical review of the technology acceptance model,” Information and Management., vol.40, pp. 191-204, 2003.
    [7] P. R. Bagozzi, “The Legacy of the Technology Acceptance Model and a Proposal for A Paradigm Shift,” Journal of the Association for Information Systems., vol. 8, pp. 244-254, 2007.
    [8] P. Zhang and N. Li, “An assessment of human–computer interaction research in management information systems: Topics and methods,” Computers in Human Behavior., vol. 20, pp. 125-147, 2004.
    [9] V. Venkatesh, F. D. Davis, and M. G. Morris, Dead or alive? Future of technology adoption research, In Gorden B. Davis symposium, University of Minnesota, 2005.
    [10] J. Canny, “The future of human–computer interaction,” ACM Queue., vol. 4, no. 6, pp. 24-32, 2006.
    [11] V. Cho, E. T. C. Cheng, and J. W. M. Lai, “The role of perceived user-interface design in continued usage intention of self-paced e-learning tools,” Computers & Education., vol. 53, no. 2, pp. 216-227, 2009.
    [12] D. Te’eni and Z. Sani-Kuperberg, “Levels of abstraction in designs of human–computer interaction: The case of e-mail,” Computers in Human Behaviour., vol. 21, pp. 817-830, 2005.
    [13] K. A. Pituch and Y. K. Lee, “The influence of system characteristics on e-learning use,” Computers and Education., vol. 47, pp. 222-244, 2006.
    [14] W. Ralph, Help! The art of computer technical support, California: Peachpit Press, 1991.
    [15] F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Quarterly., vol. 13, no. 3, pp. 319-340, 1989.
    [16] R.E. Petty and J.T. Cacioppo, Communication and Persuasion: Central and Peripheral Routes to Attitude Change, Springer-Verlag, New York, NY, 1986.
    [17] I. Ajzen and M. Fishbein, Understanding attitudes and predicting social behavior, NJ: Prentice Hall, 1980.
    [18] R. L. Oliver, An investigation of the attribute basis of emotion and related affects in consumption: Suggestions for a stage-specific satisfaction framework, In J. Sherry & B. Sternthal (Eds.), Advances in consumer research, vol. 19, 1992.
    [19] R. A. Spreng, S. B. MacKenzie, and R. W. Olshavsky, “A reexamination of the determinants of consumer satisfaction,” Journal of Marketing., vol. 60, pp. 15-32, 1996.
    [20] M. Fishbein and I. Ajzen, Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research, MA: Addison-Wesley, 1975.

    [21] L. Chen, M.L. Gillenson, and D.L. Sherrell, “Enticing online consumers: an extended technology acceptance perspective,” Information & Management., vol. 39, no. 8, pp. 705-719, 2002.
    [22] I. Ajzen, “The theory of planned behavior,” Organizational Behavior and Human Decision Processes., vol. 50, pp. 179-211, 1991.
    [23] M. Y. Lin, P. Luarn, and K. Y. Lo, “Internet Market Segmentation-An Exploratory Study of Critical Success Factors,” Marketing Intelligence & Planning., vol. 22, no. 6, pp. 601-622, 2004.
    [24] S. Taylor and P. Todd, “Decomposition and Crossover Effects in the Theory of Planned Behavior: a Study of Consumer Adoption Intentions,” International Journal of Research in Marketing., vol. 12, pp. 137-155, 1995.
    [25] A. Bandura, Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall, 1986.
    [26] S.L. Williams and N. Watson, “Perceived danger and perceived self-efficacy as cognitive determinants of acrophobic behavior,” Behavior Therapy., vol. 16, pp. 136-146, 1985.
    [27] V.J. Strecher, B.M. DeVellis, M.H. Becker, and I.M. Rosenstock, “The role of self-efficacy in achieving health behaviour change,” Health Education Quarterly., vol. 13, no. 1, pp. 73-91, 1986.
    [28] S. Kasen, R. D. Vaughan, and H. J. Walter, “Self-efficacy for AIDS preventive behaviors among tenth-grade students,” Health Education Quarterly., vol. 19, pp. 187-202, 1992.
    [29] D. R. Compeau and C. A. Higgins, “Computer self-efficacy: Development of a measure and initial test,” MIS Quarterly., vol. 19, no. 2, pp. 189-211, 1995.
    [30] V. Venkatesh and F. D. Davis, “A theoretical extension of the technology adoption model: Four longitudinal field studies,” Management Science., vol. 46, pp. 186-204, 2000.

    [31] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “Extrinsic and intrinsic motivation to use computers in the workplace,” Journal of Applied Social Psychology., vol. 22, no. 14, pp. 1111-1132, 1992.
    [32] R. L. Thompson, C. A. Higgins, and J. M. Howell, “Personal computing: toward a conceptual model of utilization,” MIS Quarterly., vol. 15, no. 1, pp. 124-143, 1991.
    [33] E.M. Rogers, Diffusion of Innovations, 4th Ed., New York: The Free Press, 1995.
    [34] D. R. Compeau and C. A. Higgins, “Application of social cognitive theory to training for computer skills,” Information Systems Research., vol. 6, no. 2, pp. 118-143, 1995.
    [35] D. R. Compeau, C. A. Higgins, and S. Huff, “Social cognitive theory and individual reactions to computing technology: a longitudinal study,” MIS Quarterly., vol. 23, no. 2, pp. 145-158, 1999.
    [36] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User Acceptance of Information Technology: Toward a Unified View,” MIS Quarterly., vol. 27, no. 3, pp. 425-478, 2003.
    [37] 張鴻昌,”員工對企業內部網路接受度之研究-以中鋼為例”,國立中山大學企業管理學系,碩士論文,2004。
    [38] G. C. Moore and I. Benbasat, “Development of an instrument to measure the perceptions of adopting an information technology innovation,” Information Systems Research., vol. 2, no. 3, pp. 173-191, 1991.
    [39] K. Mathieson, “Predicting User Intentions: Comparing the technology Acceptance Model with the Theory of Planned Behavior,” Information Systems Research., vol. 2, no. 3, pp. 173-191, 1991.
    [40] C. D. Wickens and C. Kessel, “Codes and Modalities in Multiple Resources: A Success and a Qualification,” Human Factors., vol. 30, pp. 599-616, 1998.
    [41] V. Hanson, The user experience: designs and adaptations, Proceedings of the international cross-disciplinary workshop ldots, 2004.
    [42] J. Nielsen, Usability 101: Introduction to Usability. Search, 1-4. Retrieved from http://www.useit.com/alertbox/20030825.html, 2011.
    [43] D. A. Norman, Emotional Design: Why We Love (or Hate) Everyday Things, Basic Books; 1 edition, 2003.
    [44] D. A. Norman, The Design of Everyday Things, New York: Currency, 1988.
    [45] B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer Interaction, 3rd ed. , Menlo Park, CA: Addison Wesley, 1998.
    [46] 邱柏清,”網頁介面愉悅行之研究”,國立台灣科技大學設計研究所,碩士論文,2004。
    [47] K. Vredenburg, S. Isensee, and C. Righi, User-centered esign: an integrated approach, New Jersey: Prentice Hall PTR, 2002.
    [48] 陳坤淼,”電腦多媒體之使用者介面設計探討”,高速計算世界,36-54,1,8,1999。
    [49] U.H. Chi, “Formal Specification of User Interfaces: A Comparison and Evaluation of Four Axiomatic Approaches,” Software Engineering., IEEE Transactions on, vol. SE-11, no. 8, pp. 671- 685, Aug, 1985.
    [50] B. Laurel, Computer as Theater, Addison-Wesley Publishing Company, Inc, 1993.
    [51] J. Nielsen, Usability Engineering, Academic Press, San Diego, 1993.
    [52] 張明輝,”創新學校行政管理提高行政效率”,師友,29-30,251,1988。
    [53] C. Faulkner, The essence of human–computer interaction, London: Prentice Hall, 1998.
    [54] A. L Lederer, D. J. Maupin, M. P. Sena, and Y. Zhuang, “The technology acceptance model and the World Wide Web,” Decision Support Systems., vol. 29, pp. 269-282, 2000.
    [55] J. Le Peuple and R. Scane, Use-interface design, United Kingdom: Crucial, 2003.

    [56] A. Athanassopoulos, S. Gounaris, and V. Stathakopoulos, “Behavioral Responses to Customer Satisfaction: An Empirical Study,” European Journal of Marketing., vol. 35, no. 5, pp. 687-707, 2001.
    [57] V. McKinney, K. Yoon, and F. M. Zahedi, “The Measurement of Web-Customrr Satisfaction: An Expectation and Disconfirmation Approach,” Information Systems Research., vol. 13, no. 3, pp. 296-315, 2002.
    [58] M. M. Montoya-Weiss, G. B. Voss, and D. Grewal, “Determinants of Online Channel Satisfaction with a Relational Multi-Channel Service Provider,” Journal of the Academy of Marketing Science., vol. 31, no. 4, pp. 448-458 , 2003.
    [59] S. M. Muylle, “The Conceptualization and Empirical Validation of Web Site User Satisfaction,” Information and Management., vol. 41, no. 5, pp. 543-560, 2004.
    [60] B. H. Wixom and P. A. Todd, “A Theoretical Integration of User Satisfaction and Technology Acceptance,” Information Systems Research., vol. 16, no. 1, pp. 85-102, 2005.
    [61] T. Guimaraes and M. Igbaria, “Client/server system success: exploring the human side,” Decision Sciences., vol. 28, no. 4, pp. 851-876, 1997.
    [62] I. Adamson and J. Shine, “Extending the new technology acceptance model to measure the end user information systems satisfaction in a mandatory environment: a bank’s treasury,” Technology Analysis & Strategic Management., vol. 15, no. 4, pp. 441-455, 2003.
    [63] W. J. Doll and G. Torkzadeh, “The measurement of end-user computing satisfaction,” MIS Quarterly., vol. 12, no. 2, pp. 259-274, 1988.
    [64] W. J. Doll, W. D. Xia, and G. Torkzadeh, “A confirmatory factor analysis of the end-user computing satisfaction index,” MIS Quarterly., vol. 18, no. 4, pp. 453-461, 1994.
    [65] L. M. Branscomb and J. C. Thomas, “Ease of use: A system design challenge,” IBM Systems Journal., vol. 23, pp. 224-235, 1985.
    [66] R. G. Saade and C. A. Otrakji, “First impressions last a lifetime: Effects of interface type on disorientation and cognitive load,” Computers in Human Behavior., vol. 23, pp. 525-535, 2007.
    [67] R. Chimera and B. Shneiderman, Sparks on innovation in human computer interaction, NJ: Ablex, 1993.
    [68] J. Y. L. Thong, W. Hong, and K. Y. Tam, “Understanding user acceptance of digital libraries: What are the roles of interface characteristics, organizational context, and individual differences,” International Journal of Human–Computer Studies., vol. 57, pp. 215-242, 2002.
    [69] J. Y. L. Thong, S. J. Hong, and K. Y. Tam, “The effects of post-adoption beliefs on the expectation–confirmation model for information technology continuance,” International Journal of Human–Computer Studies., vol. 64, pp. 799-810, 2006.
    [70] T. Hays, P. Keskinocak, and V. M. De Lopez, “Strategies and challenges of internet grocery retailing logistics,” APPLICATIONS OF SUPPLY CHAIN MANAGEMENT AND E-COMMERCE RESEARCH Applied Optimization., vol. 92, no. 2, pp. 217-252, 2005.
    [71] C. Liu and K. P. Arnett, “Exploring the Factors Asscoiated with Web Site Success in the Context of Electronic Commerce,” Information and Management., vol. 38, no. 1, pp. 23-33, 2000.
    [72] Y. B. Lee and J. D. Lehman, “Instructional cuing in hypermedia: A study with active and passive learners,” Journal of Educational Multimedia and Hypermedia., vol. 2, no. 1, pp. 25-37, 1993.
    [73] S. K. Wang and C. Yang, “The interface design and the usability testing of a fossilization web-based learning environment,” Journal of Science Education and Technology., vol. 14, no. 3, pp. 305-313, 2005.

    [74] E. Huang, M. H. Hsu, and Y.R. Yen, “Understanding participant loyalty intentions in virtual communities,” WSEAS Transactions on Information Science & Applications., vol. 4, no. 5, pp. 497-511, 2008.
    [75] B. Szajna, “Empirical evaluation of the revised technology acceptance model,” Management Science., vol. 42, no. 1, pp. 85-92, 1996.
    [76] M. Igbaria and M. Tan, “The consequences of information technology acceptance on subsequent individual performance,” Information and Management., vol. 32, pp. 113-121, 1997.
    [77] R. H. Bokhari, “The relationship between system usage and user satisfaction: A meta analysis,” Journal of Enterprise Information Management., vol. 18, no. 2, pp. 211-234, 2005.
    [78] L. Beck and I. Ajzen, “Predicting Dishonest Actions Using the Theory of Planned Behavior,” Journal of Research in Personality., vol. 25, pp. 285-301, 1991.
    [79] W. H. DeLone and E. R. McLean, “The DeLone and McLean Model of Information Systems Success: A Ten-Year Update,” Journal of Management Information Systems., vol. 19, pp. 9-30, 2003.
    [80] M. H. Hsu and C. M. Chiu, “Predicting electronic service continuance with a decomposed theory of planned behavior,” Behavior and Information Technology., vol. 23, no. 5, pp. 359-373, 2004.
    [81] V. Venkatesh and S. A. Brown, “A longitudinal investigation of personal computers in homes: Adoption determinants and emerging challenges,” MIS Quarterly., vol. 25, no, 1, pp. 71-102, 2001.
    [82] E. Karahanna, D. W. Straub, and N. L. Chervany, “Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption belief,” MIS Quarterly., vol. 23, no. 2, pp. 183-213, 1999.

    [83] F. D. Davis, “User acceptance of information technology: system characteristics, user perceptions, and behavioral impacts,” International Journal of Man Machine Studies., vol. 38, pp. 475-487, 1993.
    [84] T. Fenech, “Using perceived ease of use and perceived usefulness to predict acceptance of the World Wide Web,” Computer Networks and ISDN Systems., vol. 30, pp. 629-630, 1998.
    [85] D. H. Shin, “User acceptance of mobile Internet: Implication for convergence technologies,” Information and Organization Journal., vol. 19, pp. 472-483, 2007.
    [86] T. S. H. Teo, K. G. L. Vivien, and Y. C. L. Raye, “Intrinsic and Extrinsic Motivation in Internet Usage,” The International Journal of Management Science., vol. 27, pp. 25-37, 1999.
    [87] A. R. Hendrickson, P. D. Massey, and T. P. Cronan, “On the test-retest reliability of perceived usefulness and perceived ease of use scales,” MIS Quarterly., vol. 17, pp. 227-230, 1993.
    [88] J.W. Moon and Y.G. Kim, “Extending the TAM for a world-wide-web context,” Information and Management., vol. 38, pp. 217-230, 2001.
    [89] 邱皓政,量化研究與統計分析,台北市:五南,2002。
    [90] P. L. Gardner, “Measuring attitudes to science: Unidimensionality and internal consistency revisited,” Research in Science Education., vol. 25, pp. 283-289, 1995.
    [91] 張紹勳、林秀娟,SPSS For Window統計分析—初等統計與高等統計(上、下冊),台北:松崗圖書,1995。
    [92] 吳明隆,SPSS統計應用學習實務:問卷分析與應用統計,台北市:知誠數位科技, 2003。
    [93] 吳萬益,企業研究方法,第3版,台北:華泰文化,2008。
    [94] 邱皓政,量化研究與統計分析:SPSS中文視窗版資料分析範例解,台北:五南,2006。
    [95] 林惠玲、陳正倉,基礎統計學(觀念與應用),台北:雙葉書廊,2004。
    [96] J. C. Nunally, Psychometric theory, New York: McGraw-hill, 1978.
    [97] R. F. Devellis, Scale Development Theory and Apllication, London: SAGE, 1991.
    [98] X. Fan and B. Thompson, “Confidence intervals about score reliability coefficient please: An EPM guidelines editorial,” Educational and Psychological Measurement., vol. 61, no. 4, pp. 517-531, 2001.
    [99] D. V. Cicchetti, D. Showalter, and P. J. Tyrer, “The effect of number of rating scale categories on levels of interrater reliability: A Monte Carlo investigation,” Applied Psychological Measurement., vol. 9, pp. 31-36, 1985.
    [100] R. H. Finn, “Effect of some variations in rating scale characteristics on the means and reliabilities of ratings,” Educational and Psychological Measurement., vol. 34, pp. 885-892, 1972.
    [101] M. Parikh and S. Verma, “Utilizing internet technologies to support learning: An empirical analysis,” International Journal of Information Management., vol. 22, pp. 27-46, 2002.
    [102] M. T. Dishaw and D. M. Strong, “Extending the technology acceptance model with task-technology fit constructs,” Information and Management., vol. 36, no. 1, pp. 9-21, 1999.
    [103] L. L. Martins and F. W. Kellermanns, “A model of business school students’ acceptance of a web-based course management system,” Academy of Management Learning and Education., vol. 3, no. 1, pp. 7-26, 2004.
    [104] M.Y. Chuttur, Overview of the Technology Acceptance Model: Origins, Developments and Future Directions, Indiana University, USA. Sprouts: Working Papers on Information Systems, 2009.

    [105] R. Agarwal and J. Prasad, “The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies,” Decision Sciences., vol. 28, no. 3, pp. 557-582, 1997.
    [106] R. L. Oliver, “A cognitive model for the antecedents and consequences of satisfaction,” Journal of Marketing Research., vol. 17, pp. 460-469, 1980.
    [107] R. A. Spreng and J. S. Chiou, “A cross-cultural assessment of the satisfaction formation process,” European Journal of Marketing., vol. 36 no. 7/8, pp. 829-839, 2002.
    [108] L. J. Cronbach, Essentials of psychological testing, New York: Harper & Row, 1990.
    [109] H. F. Kaiser, “An Index of Factorial Simplicity,” Psychometrika., vol. 39, pp. 31-36, 1974.
    [110] J. F. Hair, W. Black, B. Babin, and R. E. Anderson, MULTIVARIATE DATA ANALYSIS, 7TH EDITION Upper Saddle River, N.J. 07458:Prentice Hall, Apr. 2009.
    [111] P. Howard, L. Rainie, and S. Jones, “Days and nights on the Internet: The impact of a diffusing technology,” American Behavioral Scientist., vol. 45, no. 3, pp. 383-404, 2001.

    下載圖示
    QR CODE