簡易檢索 / 詳目顯示

研究生: 吳慧君
論文名稱: 最大累積作功量及缺氧量評價無氧運動能力之比較研究
指導教授: 林正常
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 69
論文種類: 學術論文
相關次數: 點閱:226下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在建立無氧運動能力的物理檢測方法並與最大累積缺氧量法在預測400m最大努力跑步成績上進行比較。以 20名男性大學田徑選手為受試對象,每人分別接受最大累積缺氧量(120% ,90 rpm及40N,全力衝刺)之測驗、阻力(68N、55N&48N)-累積作功量測驗、Wingate 30秒無氧踏車測驗、400m最大努力跑步測驗與人體測量等多項測試,所得資料以混合設計雙因子變異數分析及皮爾森積差相關統計方法處理之,得到以下結果:不論是以傳統法或40N法所測得之MAOD,速度組均顯著的高於耐力組;此外,40N新方法較傳統法更能鑑別速度組與耐力組之差異性。在阻力-累積作功量方面,68N阻力下的最大累積作功量(Σ68N )及平均作功量(MP68N )較可用於評價人體之無氧運動能力。在預測400m最大努力跑步成績方面,Σ68N 和MP68N 的效果優於MAOD 及Wingate 30秒無氧踏車測驗。本研究結果顯示,68N最大累積作功量(Σ68N )與40N法所測得之MAOD較能評鑑出人體無氧運動能力。

    關鍵詞:最大累積作功量、最大累積缺氧量法、無氧運動能力、
    人體測量

    目次 中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 謝 誌 詞………………………………………………………………Ⅲ 目 次………………………………………………………………Ⅳ 表 次………………………………………………………………Ⅶ 圖 次………………………………………………………………Ⅸ 第壹章 緒論 一、問題背景……………………………………………………… 1 二、研究目的……………………………………………………… 3 三、名詞操作定義………………………………………………… 3 四、研究假設……………………………………………………… 4 五、研究的重要性………………………………………………… 5 第貳章 文獻探討 一、MAOD檢測方法及其內在效度研究……………………………6 二、MAOD法的外在效度研究…………………………………… 12 三、結語……………………………………………………………18 第參章 實驗步驟與設計 一、實驗對象………………………………………………………19 二、實驗時間、地點………………………………………………19 三、實驗設計………………………………………………………19 四、統計方法………………………………………………………24 第肆章 結果 一、40~85﹪ max次大運動時之 穩定性………………26 二、全力運動負荷模式和運動項目對MAOD值的影響…………27 三、運動負荷模式和運動專項對全力運動時之理論需氧量 平均作功量和實際耗氧量的影響………………………… 35 四、全力運動下之負荷阻力和運動項目與最大累積作量及 平均作功量之間的關係…………………………………… 40 五、MAOD、68N最大累積作功量、68N平均作功量、30 秒Wingate平均無氧動力和400m最大努力跑步成績之 相關分析…………………………………………………… 43 六、MAOD、Σ68N、MP68N和Wingate 30秒平均無氧動力 評價人體無氧運動能力之區分度………………………… 44 七、負荷阻力和運動專項對全力運動下血乳酸峰值的影響… 45 第伍章 討論 一、建立 -power關係曲線圖的運動負荷模式………………47 二、全力運動負荷模式和運動項目對MAOD值的影響……… 49 三、運動負荷模式和運動專項對全力運動時之理論需 氧量和實際耗氧量的影響………………………………… 51 四、全力運動下負荷阻力(48、55、68N)和運動專項 (速度組、耐力組)對最大累積作功量及平均作功 量之影響…………………………………………………… 52 五、MAOD、68N最大累積作功量(Σ68N)、68N平均 作功量(MP68N)、30秒Wingate平均無氧動力( Wingate MP)和400m最大努力跑步成績之相關分析…… 53 六、MAOD、Σ68N、MP68N和Wingate 30秒平均無氧動力 評價人體無氧運動能力之區分度………………………… 54 七、負荷阻力和運動專項對全力運動下血乳酸峰值的影響… 54 第六章 結論與建議 一、結論………………………………………………………… 56 二、建議………………………………………………………… 57 參考文獻 …………………………………………………… 58 附錄一 受試者須知………………………………………………… 63 附錄二 受試者同意書……………………………………………… 64 附錄三 健康情況調查表…………………………………………… 65 附錄四 受試者原始基本資料……………………………………… 66 附錄五 各項檢測之基本資料……………………………………… 67 表 次 表2-1 不同運動項目選手MAOD值的測量結果………………… 15 表3-1 受試者基本資料 ………………………………………… 19 表4-1 全力運動負荷模式和運動專項對MAOD絕對值之變異 數分析摘要表 …………………………………………… 28 表4-2 全力運動負荷模式和運動專項對MAOD絕對值之檢測 結果 ……………………………………………………… 28 表4-3 全力運動負荷模式和運動專項對MAOD體重相對值之 變異數分析摘要表 ……………………………………… 29 表4-4 全力運動負荷模式和運動專項對MAOD體重相對值之 檢測結果 ………………………………………………… 30 表4-5 全力運動負荷模式和運動專項對MAOD去脂體重相對 值之變異數分析摘要表 ………………………………… 31 表4-6 全力運動負荷模式和運動專項對MAOD去脂體重相對 值之檢測結果 …………………………………………… 31 表4-7 全力運動負荷模式和運動專項對MAOD下肢體積相對 值之變異數分析摘要表 ………………………………… 32 表4-8 全力運動負荷模式和運動專項對MAOD下肢體積相對 值之檢測結果 …………………………………………… 33 表4-9 全力運動負荷模式和運動專項對MAOD下肢肌肉質量 相對值之變異數分析摘要表 …………………………… 34 表4-10 全力運動負荷模式和運動專項對MAOD下肢肌肉質量 相對值之檢測結果 ……………………………………… 34 表4-11 全力運動負荷模式和運動專項對2-3分鐘全力運動 時理論需氧量之變異數分析摘要表 …………………… 35 表4-12 全力運動負荷模式和運動專項對2-3分鐘全力運動 時理論需氧量之檢測結果 ……………………………… 36 表4-13 全力運動負荷模式和運動專項對2-3分鐘全力運動 時平均作功量之變異數分析摘要表…………………… 37 表4-14 全力運動負荷模式和運動專項對2-3分鐘全力運動 時平均作功量之檢測結果 ……………………………… 37 表4-15 全力運動負荷模式和運動專項對2-3分鐘全力運動 時實際耗氧量之變異數分析摘要表 …………………… 38 表4-16 全力運動負荷模式和運動專項對2-3分鐘全力運動 時實際耗氧量之檢測結果 ……………………………… 39 表4-17 負荷阻力和運動專項對全力運動下最大累積作功量 之變異數分析摘要表 ………………………………… 40 表4-18 負荷阻力和運動專項對全力運動下最大累積作功量 之檢測結果 ……………………………………………… 41 表4-19 負荷阻力和運動專項對全力運動下平均作功量之變 異數分析摘要表 ………………………………………… 42 表4-20 負荷阻力和運動專項對全力運動下平均作功量之檢 測結果 …………………………………………………… 42 表4-21 Wingate平均無氧動力、Σ68N和MP68N與400m最大努 力跑步成績之相關係數摘要表 ………………………… 43 表4-22 MAOD與Wingate平均無氧動力、400m最大努力跑步 成績、Σ68N及MP68N之相關係數摘要表 ………………… 44 表4-23 MAOD、Σ68N、MP68N和Wingate MP評價無氧運動能力 之區分度 …………………………………………………45 表4-24 負荷阻力和運動專項對全力運動下血乳酸峰值之變 異數分析摘要表 ………………………………………… 46 表4-25 負荷阻力和運動專項對全力運動下血乳酸峰值之檢 測結果 …………………………… 圖 次 圖3-1 2分鐘最大運動時MAOD、耗氧量和需氧量之關係圖……20 圖4-1 40-85% max次大運動時之 穩定性 …………… 26 圖4-2 全力運動負荷模式和運動專項對MAOD絕對值的影響… 28 圖4-3 全力運動負荷模式和運動專項對MAOD體重相對值的 影響 ……………………………………………………… 30 圖4-4 全力運動負荷模式和運動專項對MAOD去脂體重相對 值的影響 ………………………………………………… 31 圖4-5 全力運動負荷模式和運動專項對MAOD下肢體積相對 值的影響 ………………………………………………… 33 圖4-6 全力運動負荷模式和運動專項對MAOD下肢肌肉質量 相對值的影響 …………………………………………… 34 圖4-7 全力運動負荷模式和運動專項對2-3分鐘全力運動時 理論需氧量的影響 ……………………………………… 36 圖4-8 全力運動負荷模式和運動專項對2-3分鐘全力運動時 平均作功量的影響 ……………………………………… 38 圖4-9 全力運動負荷模式和運動專項對2-3分鐘全力運動時 實際耗氧量的影響 ………………………………………39 圖4-10 負荷阻力和運動專項對全力運動下最大累積作功量的 影響 ………………………………………………………41 圖4-11 負荷阻力和運動專項對全力運動下平均作功量的影響…43 圖4-12 負荷阻力和運動專項對全力運動下血乳酸峰值的影響…46

    Bangsbo, J., Gollnick, P. D., Graham, T. E., Juel, C., Kiens, B., Mizuno, M., & Saltin, B. (1990). Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in human. Journal of Physiology(Lond), 422, 539-559.

    Bangsbo, J., Michalsik, L., & Petersen, A. (1993). Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. International Journal of Sports Medicine, 14(4), 207-213.

    Bangsbo, J. (1996). Oxygen deficit: A measure of the anaerobic energy prodution during intense exercise? Canadian Journal of Applied Physiology, 21(5), 350-363.

    Bangsbo, J. (1996). Bangsbo responds to Medbψ's paper. Canadian Journal of Applied Physiology, 21(5), 384-388.

    Bangsbo, J. (1998). Quantification of anaerobic energy production during intense exercise. Medicine and Science in Sports and Exercise, 30(1), 47-52.

    Buck, D., & McNaughton, L. (1999). Maximal accumulated oxygen deficit must be calculated using 10-min periods. Medicine and Science in Sports and Exercise, 31(9), 1346-1349.

    Calbet, J.A.L., Chavarren, J., & Dorado, C. (1997). Fractional use of anaerobic capacity during 30-and a 45-s Wingate test. European Journal of Applied Physiology, 76, 308-313.

    Doherty, M. (1998). The effects of caffeine on maximal accumulated oxygen deficit and short-term running performance. International Journal of Sport Nutrition, 8(2), 95-104.
    Graham, T. E. (1996). Oxygen deficit: Conclusion. Canadian Journal of Applied Physiology, 21(5), 389-390.

    Green, S., Dawson, B. T., Goodman, C., & Carey, M. F. (1994). The y-intercept of the maximal work-duration relationship and anaerobic capacity in cyclists. European Journal of Applied Physiology and Occupational Physiology, 69, 550-556.

    Green, S., Dawson, B. T., Goodman, C., & Carey, M. F. (1996). Anaerobic ATP production and accumulated O2 deficit in cyclists. Medicine and Science in Sports and Exercise, 28(3), 315-321.

    Green, S., & Dawson, B. T. (1996). Methodological effects on the -power regression and the accumulated O2 deficit. Medicine and Science in Sports and Exercise, 28(3), 392-397.

    Hermansen, L., & Medbψ, J. I. (1984). The relative significance of aerobic and anaerobic processes during maximal exercise of short duration. Medicine and Sport Science, 17, 56-67.

    Hill, D. W., & Smith, J. C. (1994). A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept. Journal of Sports Medicine and Physical Fitness, 34, 23-37.

    Hill, D.W. (1996). Determination of accumulated O2 deficit in exhaustive short-duration exercise. Canadian Journal of Applied Physiology, 21(1), 63-74.

    Hill, D. W., Ferguson, C. S., & Ehler, K. L. (1998). An alternative method to determine maximal accumulated O2 deficit in runners. European Jourmal of Applied Physiology, 79, 114-117.

    Jacobs, I., Bleue, S., & Goodman, J. (1997). Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Canadian Journal of Applied Physiology, 22(3), 231-243.

    Medbψ, J. I., & Mohn, A. C., Tabata, I. Bahr, R., Vaage, O., & Sejersted, O. M. (1988). Anaerobic capacity determined by maximal accumulated O2 deficit. Journal of Applied Physiology, 64(1), 50-60.

    Medbψ, J. I., & Tabata, I. (1989). Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. Journal of Applied Physiology, 67(5), 1881-1886.

    Medbψ, J. I., & Burgers, S. (1990). Effect of training on the anaerobic capacity. Medicine and Science in Sports and Exercise, 22(4), 501-507.

    Naughton, G. A., Carlson, J. S., Buttifant, D. C., Selig, S. E., Meldrum, K., Mckenna, M. J., & Snow, R. J. (1997). Accumulated oxygen deficit measurements during and after high-intensity exercise in trained male and female adolescent. European Journal of Physiology, 76, 525-531.

    Naughton, G. A., & Carlson, J. S. (1998). The accumulated oxygen deficit measure and its application in pediatric exercise science. Pediatric Exercise Science, 10(1), 12-20.

    Neder, J. A., Nery, L. E., Andreoni, S., Sachs, A., & Whipp, B. J. (2000). Oxygen cost for cycling as related to leg mass in male and females, aged 20 to 80. International Journal of Sports Medicine, 21, 263-269.

    Nummela, A., & Rusko, H. (1995). Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes. International Journal of Sports Medicine, 16(8), 522-527.

    Olesen, H. L. (1992). Accumulated oxygen deficit increase with inclination of uphill running. Journal of Applied Physiology, 73(3), 1130-1134.

    Olesen, H. L., Raabo, E., Bangsbo, J., Secher, N. H . (1994). Maximal oxygen deficit of sprint and middle distance runners. European Journal of Applied Physiology, 69, 140-146.

    Pizza, F.X., Naglieri, T.A., Holtz, R. W., Mitchell, J.B., Starling, R.D., & Braun, W.A. (1996). Maximal accumulated oxygen deficit of resistance trained men. Canadian Journal of Applied Physiology, 21(5), 391-402.

    Ramsbottom, R., Nevill, A. M., Nevill, M. E., Newport, S., & Williams, C. (1994). Accumulated oxygen deficit and short-distance running performance. Journal of Sports Science, 12, 447-453.

    Renoux, J. C., Petit, B., Billat, V., & Koralsztein, J. P. (2000). Caculation of times to exhaustion at 100 and 120% maximal aerobic speed. Ergonomics, 43(2), 160-166.

    Saltin, B. (1990). Anaerobic capacity. Past, prospective. In: Biochemistry of Exercise, edited by A.W. Taylor Champaign, IL: Human Kinetics, 387-412.

    Scott, C. B., Roby, F.B., & Lohman, T. G. (1991). The maximally accumulated oxygen deficit as an indicator of anaerobic capacity. Medicine and Science in Sports and Exercise, 23(5), 618-624.

    Shephard, R.T., Bouhlel, E., Vandewalle, H., & Monod, H. (1988). Muscle mass as a factor limiting physical work. Journal of Applied Physiology, 64, 1472-1479.
    Weyand, P.G., Cureton, K. J., Conley, D. S., & Higbie, E. J. (1993). Peak oxygen deficit during one-and two-legged cycling in men and women. Medicine and Science in Sports and Exercise, 25, 584-591.

    Weyand, P. G., Cureton, K. J., Conley, D. S., Sloniger, M. A., & Liu, Y. L. (1994). Peak oxygen deficit predicts sprint and middle-distance track performance. Medicine and Science in Sports and Exercise, 26(9), 1174-1180.

    Woolford, S. M., Withers, R. T., Craig, N. P., Bourdon, P. C., Stanef. T.,
    & McKenzie, I. (1999). Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds cyclists. European Journal of Applied Physiology, 80, 285-291.

    QR CODE