簡易檢索 / 詳目顯示

研究生: 歐威志
Ou Wei-Jhih
論文名稱: 將二氧化矽奈米粒子直接電還原成矽
Fabrication of Silicon from Direct Electrolytic Reduction of Silicon Dioxide Nanoparticles
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 融鹽直接電還原
英文關鍵詞: Silicon, molten salts, Direct Electrolytic Reduction
論文種類: 學術論文
相關次數: 點閱:114下載:51
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功直接在CaCl2 850℃與LiCl-KCl-CaCl2 500℃或600℃電還原二氧化矽奈米粒子。一個新的二氧化矽接觸電極的方法被用來固定二氧化矽的奈米粒子。除此之外,我們用這樣的起始物可以成功的電還原出奈米等級的矽。我們不僅從TEM影像中觀察出二氧化矽粒子其大小形狀對所還原之矽大小形狀的影響,也從拉曼光譜中得知不同電還原溫度其結晶程度的差異。溫度高結晶程度較好,溫度低則較差。另一方面我們將二氧化矽包覆在金奈米粒子的外面,將其電解還原得到矽包金的奈米複合材料。此外,我們利用金奈米粒子或金奈米棒的摻入來改變二氧化矽的形狀進而成長出奈米矽棒。

    The direct electrolytic reduction of SiO2 nanoparticles has been achieved in molten CaCl2 at 850℃ and in LiCl-KCl-CaCl2 at 500℃ or 600℃. A new type of SiO2 contacting electrode was prepared to fix SiO2 nanoparticles. Otherwise, we achieve silicon in nanoscale from silicon dioxide nanopartic- les. We not only observe the effect of size and shape between silicon dioxide particle and reducted silicon from TEM but also crystallization at different temperature from Raman spectra. Good crystalline at higher temperature and less crystalline at lower temperature. On the other way, we prepare Au@SiO2 particle and electrolytic reduction of Au@SiO2 to complex nanomaterial, Au@Si. And we control the shape of silicon dioxide by add Au nanoparticles or Au nanorod to approach silicon nanorod.

    目錄 總目錄...............................Ⅰ 中文摘要.............................IV 英文摘要..............................V 第一章 緒論...........................1 1.1 前言.............................1 1.2 矽的發現..........................1 1.3 矽的性質..........................1 1.4 矽的運用-半導體....................2 1.5 矽的重要性……………………………………4 1.6 矽的來源與純化………………………………6 1.7 研究動機、方法與模型………………………8 1.7.1 電還原系統與Penetration 3PIs 模型........9 1.7.1.1 Penetration 3PIs 模型與反應機制...13 1.7.1.2 以較低溫的混合鹽類電解還原SiO2......38 1.7.2 以氣相沉積法成長奈米尺度的矽..............41 1.7.2.1 化學氣相沉積法介紹.................41 1.7.2.1.1 化學氣相沉積動力學...........43 第二章 儀器原理....................................49 2.1 粉末X光繞射光譜(Powder X-ray Diffration).......49 2.2 穿透式電子顯微鏡(Transmission electron Microscopy)...49 2.3 電化學原理.....................................51 2.3.1 循環伏安法...................................51 2.3.2極化現象......................................54 2.3.2.1 活性過電位........................55 2.3.2.2 濃度過電位........................56 2.3.2.3 歐姆過電位........................57 2.4 拉曼光譜分析儀(Raman spectroscopy)..............57 第三章 實驗部份.....................................60 3.1 實驗藥品及設備..................................60 3.1.1 實驗藥品.....................................60 3.1.2 實驗設備.....................................61 3.2 實驗方法.......................................62 3.2.1 電解質的配置..................................62 3.2.2 石英片、合成二氧化矽奈米粒子與金奈米棒和 Au-rod@SiO2........................................63 3.2.3 電極的製作....................................64 3.2.4 電極的清洗與存放...............................65 3.3 材料鑑定與分析...................................65 3.3.1 XRD分析......................................65 3.3.2 TEM分析......................................65 3.3.3 Raman spectroscope 分析......................66 3.4 電化學特性測試...................................66 3.4.1 電化學特性量測.................................66 3.4.1.1 循環伏安法...................................67 3.4.1.2 Potentiostatic..............................67 第四章 結果與討論.....................................68 4.1 以CVD合成Si之結果................................68 4.2 電解還原石英片之結果..............................69 4.3 合成二氧化矽奈米粒子..............................70 4.4 電解還原二氧化矽奈米粒子之結果與討論(XRD與TEM分析)...70 4.5 拉曼光譜分析.....................................78 第五章 結論及未來展望.................................80 5.1 結論............................................80 5.2 未來展望.........................................80 第六章 參考資料.......................................81

    [1]. W.Zulehner, B.Elvers, S.Hawkin, W.Russey, G.Schulz, Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A23, 5th ed., VCH, Weinheim, 1995,pp. 721-748.
    [2]. N.Nagamuri, I.Malinsky, A.Claveau, Metall.T rans.B 1986, 17, 503–514.
    [3]. B. G. Gribov, K. V. Zinov’ev, Inorg.Mater .2003, 39,653–662.
    [4]. G.M.Rao, D.Elwell, R.S.Feigelson, J.El ectrochem.Soc. 1980, 127,1940–1944.
    [5]. R.C.DeMattei, D.Elwell, R.S.Feigelson, J.Electrochem. Soc., 1981, 128, 1712–1714.
    [6]. D.J.Fray, T.W.Farthing, Z.Chen, Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt PCT Patent, WO9964638,1998.
    [7]. G.Z.Chen, D.J.Fray, T.W.Farthing, Nature 2000,407,361–364.
    [8]. T.Nohira, K.Yasuda, Y.Ito, Nat.Mater .2003, 2, 397-401.
    [9]. K.Yasuda, T.Nohira, Y.Ito, J.Phys.Chem .Solids 2005,66,443–447.
    [10]. K.Yasuda, T.Nohira, K.Takahashi, R.Hagiwara, Y.H.Ogata,J.Electrochem .Soc. 2005,152, D232-D237.
    [11]. K.Yasuda, T.Nohira, K.Amezawa, Y.H.Ogata, Y.Ito, J. Electrochem.Soc. 2005, 152, D69-D74.
    [12]. P.C.Pistorius, D.J.Fray, J.S.Afr .Inst.Min.Metall. 2006, 106, 31–41.
    [13]. X.B.Jin, P.Gao, D.H.Wang, X.H.Hu, G.Z.Chen,Angew.Chem. 2004,116, 751; Angew.Chem.Int. Ed. 2004, 43, 733–736.
    [14]. Y.Deng, D.H.Wang, W.Xiao, X.B.Jin, X.H.Hu, G.Z.Chen, J.Phys.Chem.B 2005, 109,14043–14051.
    [15]. P.Gao, X.B.Jin, D.H.Wang, X.H.Hu, G.Z.Chen, J.Electroanal.Chem. 2005, 579, 321–328.
    [16]. W.Xiao, X.B.Jin, Y.Deng, D.H.Wang, G.Z.Chen, Chem.Eur . J., DOI: 10.1002/chem.200600172.
    [17]. W.Xiao, X.B.Jin, Y.Deng, D.H.Wang, ChemPhysChem 2006, 7, 1750–1758.
    [18]. Y. Deng, Wang, W.Xiao, Jin, Hu, George Z. Chen J. Phys. Chem. B, 2005, 109 (29), 14043-14051.
    [19]. O.Kubaschewski, C.B.Alcock, and P.J.Spencer, Materials Thermochemistry, 6th ed.,Pergamon, Oxford,U.K.(1993).
    [20]. L.C.Burton and A.H.Madjid, Phys. Rev.,185,1127 (1969).
    [21]. G.Z.Chen, D.J.Fray in Proceedings of the 6th International Symposium on Molten Salt Chemistry and Technology (Eds.: N. Y. Chen, Z. Y. Qiao),Shanghai University, China, 2001, 79– 85.
    [22]. G.Z.Chen, E.Gordo, D.J.Fray,Metall.Mater .T rans.B 2004, 35, 223 –233.
    [23]. T.Nakamura, M.Itoh, J.Electrochem .Soc. 1990,137,1166–1169.
    [24]. C.S.Cha, Kinetics of Electrode Processes, 3rd ed., Science Press, Beijing, 2002 .
    [25]. P.D.Ferro, B.Mishra, D.L.Olson, W.A.Averill, Waste Manage. 1998, 17, 451–461.
    [26]. K.Yasuda, T.Nohira, Y.H.Ogata, Y.Ito, J.Electrochem. Soc. 2005, 152, D208-D212.
    [27]. D.V.Sementsova and G.A.Bukhalova, Russ. J. Inorg. Chem.,12 , 867 (1967).
    [28]. A.Bertoluzza, C.Fagnano, M.A.Morelli, V.Gottardi, and M. Guglielmi, J. Non-Cryst. Solids, 48, 117 (1982).
    [29]. F.L.Galeener, J. Non-Cryst. Solids, 49, 53 (1982).
    [30]. A.G.Revesz and G.E.Walrafen, J. Non-Cryst. Solids, 54,323 (1983).
    [31]. C.J.Brinker, D.R.Tallant, E.P.Roth, and C.S.Ashley, J. Non-Cryst. Solids, 82,117 (1986).
    [32]. J.H.Parker, D.W.Feldman, and M.Ashkin,Phys. Rev.,155, 712 (1967).
    [33]. T.R.Hart, R.L.Aggarwal, and B.Lax, Phys.Rev.B,1,638 (1970).
    [34]. H.Richter, Z.P.Wang,and L.Ley, Solid State Commun.,39,625 (1981).
    [35]. Z.Iqbal and S.Veprek, Solid State Phys., 15, 377 (1982).
    [36]. S.Nakashima and A.Mitsuishi,Oyo Butsuri, 53, 558 (1984).
    [37]. C.Spinella and S.Lombardo,J.Appl.Phys.,84,5383(1998).
    [38]. G.L.Olson and J.A.Roth,Mater.Sci.Rep.,3,1(1988).
    [39]. J.W.Mayer,L.Eriksson,and J.A.Davis, Can.J.Phys., 45,663(1968).
    [40]. L.Csepregi,J.W.Mayer,and T.W.Sigmon,Phys.Lett.,54A, 157(1975).
    [41]. Smith,D. L.,Thin-Film Deposition principle & practice, Mcgraw-Hill, USA,1995 .
    [42]. Morosanu, C. E.,Thin Films by Chemical Vapor Deposition, Elsevier, USA, 1990 .
    [43]. Wolf,S.,and Tauber,R.N.,Silicon processing for the VLSI ERA, Lattice press,USA, 1986 .
    [44]. Kamins,T.,Polycrystalline silicon for intergraded circuits and displays, Kluwer Academic publisher, Boston, 2nd, 1998 .
    [45]. 彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”, 1997.
    [46]. Newville, M. FEFFIT document ,1996 .
    [47]. Tran, T. D.; Langer, S. H., Anal. Chem., 1993, 65, 1805.
    [48]. M.D. Bernardi, M.W.Verbrugge, J. Electrochem. Soc.,1992,139 2477.
    [49]. 汪建民, 材料分析, 中國材料科學學會, 台灣, 1998 .
    [50]. Warren, B. E., X-ray Diffraction, Assison-Wesley,USA,253, 1989 .
    [51]. Ichikawa, M., Takeshita, J., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys.,38, L24, 1999 .
    [52]. Okada, T., Iwaki, T., Kasahara, H., and Yamamoto, K., Jpn. J. Appl. Phys., 24,161, 1985 .
    [53]. Kakinuma, H., Mohri, M., Sakamoto, M., and Tsuruoka, T., J. Appl. Phys., 70,7374, 1991 .
    [54] K.Yasuda,T.Nohira,R.Hagiwara,Y.H.Ogata Electrochimica Acta 53(2007) 106-110.

    下載圖示
    QR CODE