簡易檢索 / 詳目顯示

研究生: 朱麒宇
論文名稱: 精微電加工法開發內皮層陣列腦波探針研究
Development of a penetrating intra-cortical probe array by using micro electro-machining
指導教授: 陳順同
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 128
中文關鍵詞: 內皮層陣列腦波探針複合式精微電加工螺旋式放電加工鍍銀技術腦波波形
論文種類: 學術論文
相關次數: 點閱:220下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在針對擷取腦波訊號的內皮層陣列探針,提出一種複合式精微電加工(Hybrid micro electro-machining)的製程技術,此項技術包含兩部分:螺旋式放電加工(Spiral EDM)及鍍銀技術(Silver plating)。研究之初,以外徑ψ300μm碳化鎢棒材,對鉻銅(Cu-Cr)棒材進行螺旋式微孔放電,製成具陣列式微孔電極。再令鉻銅電極倒置夾持,對黃銅(Brass)電極(腦波探針素材)進行螺旋式放電,透由電極搖動、啄鑽運動與一系列精微放電加工參數的實驗,以獲得精確的內皮層陣列腦波探針,探針之尺寸規劃為:5×5陣列針數、探針高度350μm、探針尖端外徑50μm、探針錐率1:7。由實驗得知,採用兩段式電容放電加工,可獲得一適當的表面粗糙度Ra2.9μm,此表面粗糙度恰能提供針體對腦部皮層組織足夠的摩擦力,使探針不易脫落。完成的陣列探針,再輔以銀電法快速覆層,以便提高探針表面的電導度。實驗也證實,以批量式放電製作內皮層腦波陣列探針,可獲得最快的成形時間:3.1分/顆,比起單顆探針製作(5.8分/顆),約僅一半的加工時間。完成的內皮層陣列腦波探針進行腦波擷取實驗,所獲得的腦波訊號(α波, β波, θ波, δ波),包括波形強度及波形重現性,皆證實優於市售的腦波電極;而探針使用壽命經1000次插拔及50次的側向搖動測試後,發現探針仍能維持其原有的形狀精度,證實本研究所開發的內皮層陣列探針能精確應用於腦波訊號的量測,並且,所提複合式精微電加工法著實能應用於生醫領域。

    This study presents the development of hybrid micro electro-machining technique in which spiral electrical discharge machining (EDM) and silver plating are employed to fabricate a penetrating intra-cortical probe array for detecting human brain activity. The probe owns a design of 5×5array micro pillar. The height, tip diameter, taper rate of each micro pillar and the inter-pillar spacing are 350µm, 50µm,1:7 and 550µm,respectively. A micro-holes array is first formed on a small rod-shaped copper-chromium (Cu-Cr) workpiece by using spiral EDM and micro tungsten carbide electrode with a 300μmdiameter. Spiral EDM operation is again employed to machine the penetrating intra-cortical probe array on a rod-shaped brass workpiece by applying the finished Cu-Cr electrode. After a series of spiral EDM experiments, it is found that two-step capacity discharge can achieve a surface roughness of Ra2.9μmon the pillar surface, which provides sufficient friction between the contact interfaces. Also, experimental results confirmed that batch spiral EDM can speed the fabrication of probe array up to 3.1 minutes each piece. This time is approaching half of the machining time for single probe array(5.8 minutes). To increase the conductivity of the probe array, silver plating process with 1μmin coating thickness is implemented. Experiment in human brain activity detection is conducted and obtained as α, β, θ and δ activities via the finished penetrating intra-cortical probe array. It was verified that the developed probe array used in the intensity and repeatability of the signal activity is superior to that of the existing commercial probe. After life tests with inserting/pulling out of 1000 times and waggling of 50 times, the form accuracy of the probe can still be kept demonstrated that the developed probe can really be used in measurement of human brain activity. Also, the proposed micro electro-machining technique can contribute significantly to the bio-medical field.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 ix 符號說明 xiv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 常用陣列式腦波探針製法回顧 5 1.2.2 放電加工技術成形精微探針及應用 14 1.2.3 腦波探針覆層之製法回顧 20 1.3 研究動機 24 1.4 研究目的 26 1.5 研究方法 26 第二章 實驗原理 28 2.1 精微放電加工原理 28 2.1.1 精微雕模放電加工機電源迴路 31 2.2 精微線切割放電加工原理 33 2.3 電鍍原理 33 2.4 腦電波圖概論 37 2.4.1 人體腦部構造 37 2.4.2 腦電波圖定義 37 第三章 實驗設備 41 3.1 精微雕模放電加工機 41 3.2 CNC線切割放電加工機 42 3.3 CNC立式綜合加工機 43 3.4 量測儀器設備 43 3.4.1 光學工具顯微鏡 44 3.4.2 掃描式電子顯微鏡 44 3.4.3 3D雷射共軛焦顯微鏡 45 3.4.4 腦波訊號判讀設備 46 3.5 實驗材料 47 3.5.1 碳化鎢電極 47 3.5.2 鉻銅電極與黃銅材料 48 3.5.3 探針覆層材料 49 第四章 內皮層陣列腦波探針素材放電成形 50 4.1 內皮層陣列腦波探針設計 52 4.2 螺旋式放電加工製作陣列微孔電極 54 4.2.1 螺旋式放電加工軌跡路徑規劃 54 4.2.2 放電工作電容對微孔成形的影響 55 4.2.3 電極搖動對陣列微孔尺寸精度的影響 58 4.2.4 碳化鎢電極磨耗探討 60 4.3 螺旋式放電加工製作內皮層陣列腦波探針 63 4.3.1 螺旋式放電加工軌跡路徑規劃 63 4.3.2 探針陣列針數對探針成形時間的影響 64 4.3.3 電極搖動量對陣列探針成形的影響 67 4.3.4 探針陣列針數對牢固力的影響 69 4.3.5 放電脈衝時間(Pulse duration, on)對探針表面粗糙度的影響 71 4.3.6 間隙電壓與電極滯留及離開時間對探針成形效率的影響 76 4.3.7 放電工作電容對探針外徑一致性的影響 82 4.3.8 鉻銅電極磨耗探討 86 4.4 批量內皮層陣列腦波探針製作 88 4.4.1 批量內皮層陣列腦波探針之夾治具設計 88 4.4.2 探針顆數與電流大小對製程時間及表面粗糙度的影響 89 第五章 內皮層陣列腦波探針覆層與腦波訊號偵測 95 5.1 探針受力形變分析討論 95 5.2 探針鍍層厚度控制 97 5.3 腦波訊號偵測 100 5.4 腦波訊號比較 102 5.4.1 探針鍍層厚度與腦波訊號強度比較 102 5.4.2 探針陣列針數與腦波訊號強度比較 103 5.4.3 市售電極與內皮層探針的腦波訊號比較 105 5.4.4 市售電極與內皮層探針的使用次數比較 106 5.4.5 市售電極與內皮層探針的製作成本及生產效能比較 109 5.4.6 腦波波形(α波, β波, θ波, δ波)驗證 110 第六章 結論與未來展望 117 6.1 結論 117 6.2 未來展望 120 參考文獻 122

    1. 工研院(Industrial Economics & Knowledge Center, IEK)產業情報網, 2014, http://ieknet.iek.org.tw/
    2. S. Gollakota,H.A. Hassanieh, B. Ransford, D. Katabi, K. Fu, IMD Shield: Securing implantable medical devices, Massachusetts Institute of Technology, 2011
    3. 737 Production list, Planespotters.net, Retrieved 2014-03-13,
    http://www.planespotters.net/Production_List/Boeing/737/29099.html
    4. 內政部警政署, 2014, http://www.npa.gov.tw/
    5. 美國高速公路安全局(National Highway Traffic Safety Administration, NHTSA), http://www.nhtsa.gov/
    6. R. Caton, The electric currents of the brain, British Medical Journal, Vol. 2, pp.278, 1875
    7. R. Cooper, et al, EEG Technology, Butterworth, 3rd Edition, pp.1-2, 1980
    8. 生醫應用微型感測器與模組之研究與發展, 吳順德, 電子月刊, spl.mt.ntnu.edu.tw, 2008
    9. T. Nordhausen, M. Maynard, A. Normann, Single unit recording capabilities of a 100 microelectrode array, Brain Research 726, pp.129-140, 1996
    10. T. Fofonoff, S. Martel, C. Wiseman, R. Dye, I. Hunter, N. Hatsopoulos, and J. Donoghue, A highly flexible manufacturing technique for microelectrode array fabrication, Proceedings of the second joint EMBS/BMES conference, pp.23-26, 2002
    11. C.T. Lin, J.C. Chiou, L.W. Ko, T.P. Jung, S.F. Liang, J.L. Jeng, and C.T. Hong, Using Novel MEMS EEG Sensors in Detecting Drowsiness Application, IEEE Biomedical Circuits and Systems Conference (BioCAS 2006), London, England, Nov. 29-Dec. 1, 2006
    12. T.P Jung, J. Sullivan, R. Deiss, G. Cauwenberghs, A brain-machine interface using dry-contact, low-noise EEG sensors, IEEE 978-1-4244-1684-4/08/$25.00, pp.1986-1989, 2008
    13. S. Myllymaa, K. Myllymaa, H. Korhonen, J. Toyras, J.E. Jaaskelainen, K. Djupsund, H. Tanila, R. Lappalainen, Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials, Biosensors and Bioelectronics 24, pp.3067-3072, 2009
    14. R. Bhandari, S. Negi, L. Rieth, F. Solzbacher, A wafer-scale etching technique for high aspect ratio implantable MEMS structures, Sensors and Actuators A, Vol.162, pp.130-136, 2010
    15. L. Etholm, D. Arabadzisz, H. Lipp, P. Heggelund, Seizure logging: A new approach to synchronized cable-free EEG and video recordings of seizure activity in mice, L. Etholm et al./Journal of Neuroscience Methods 192, pp.254-260, 2010
    16. C. Grozea, C. D. Voinescu, S. Fazli, Bristle-sensors-low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications, Journal of Neural Engineering, Vol.8, 025008, 2011
    17. L. F. Wang, J. Q. Liu, B. Yang, C. S. Yang, PDMS-Based Low Cost Flexible Dry Electrode for Long-Term EEG Measurement, IEEE SENSORS JOURNAL, Vol. 12, No.9, pp.2898-2904, 2012
    18. P. Salvo, R. Raedt, E. Carrette, D. Schaubroeck, J. Vanfleteren, L. Cardon, A 3D printed dry electrode for ECG/EEG recording, Sensors and Actuators A: Physical, Vol.174, pp.96-102, 2012
    19. 郭哲希, 微機電技術應用於倒鉤狀乾式腦電波電極之研製, 國立臺灣大學機械工程學研究所學位論文, pp.57, 2012
    20. W. Zhou, R. Song, X. Pan, Y. Peng, X. Qi, J. Peng, K. Hui, K. Hui, Fabrication and impedance measurement of novel metal dry bioelectrode, Sensors and Actuators A: Physical, Vol.201, pp.127–133, 2013
    21. Y.Y. Hu , D. Zhu , N.S. Qu, Y. B. Zeng, P. M. Ming, Fabrication of high-aspect-ratio electrode array by combining UV-LIGA with micro electro-discharge machining, Microsyst Technol, Vol.15, pp.519-525, 2009
    22. W. Zeng, Z. Wang, M. Weng, Y. Liu, Micro-electrode array and micro-hole array fabrication by combined micro-WEDM and EMMD, Digest journal of nanomaterials and biostructures, Vol.7, No.2, pp.755-761, 2012
    23. W. Yuangang, Z. Fuling, W. Jin, Wear-resist Electrodes for Micro-EDM, Chinese Journal of Aeronautics 22, pp.339-342, 2009
    24. U. Maradia, M. Boccadoro, J. Stirnimann, I. Beltrami, F. Kuster, K. Wegener, Die-sink EDM in meso-micro machining, Procedia CIRP 1 ,pp. 166-171, 2012
    25. F. Klocke, M. Schwade, A. Klink, D. Veselovac, Analysis of material removal rate and electrode wear in sinking EDM roughing strategies using different graphite grades, The Seventeenth CIRP Conference on Electro Physical and Chemical Machining (ISEM), pp.164-168, 2013
    26. 楊士緯, 高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究, 國立臺灣師範大學機電工程學研究所學位論文, pp. 35-61, 2013
    27. M. Matteucci, R. Carabalona, M. Casella, E. Di Fabrizio, F. Gramatica,
    M. Di Rienzo, E. Snidero, L. Gavioli, M. Sancrotti, Micropatterned dry electrodes for brain–computer interface, Microelectronic Engineering 84 , pp.1737–1740, 2007
    28. W. C. Ng, H. L. Seet, K. S. Lee, N. Ning, W. X. Tai, M. Sutedja, J. Y. H. Fuh, and X. P. Li, Micro-spike EEG electrode and the vacuum-casting technology for mass production, Journal of materials processing technology, Vol.209, pp.4434-4438, 2009
    29. Y.F. Chen, W.H. Pei, S.Y. Chen, X. Wu, S.S. Zhao, H. Wang, H.D. Chen, Poly(3,4-ethylenedioxythiophene) (PEDOT) as interface material forimproving electrochemical performance of microneedles array-baseddry electrode, Sensors and Actuators B 188, pp.747-756, 2013
    30. T. Yuan, D. Chen, J. d. Chen, X. Chen, X. Wang, B. Lu, A novel MEMS elastic-based dry electrode for electroencephalography measurement, Microsyst Technol, 2013
    31. MINDO腦科學研究中心, 2014, http://mindo.com.tw/tw/
    32. 湯雅雯, 腦波量測系統之研製與腦波信號之非線性分析, 國立成功大學電機工程學研究所學位論文, pp. 53, 2005
    33. C.T. Lin, L.D. Liao, Y.H. Liu, I.J. Wang, B.S. Lin, J.Y. Chang, Novel dry polymer foam electrodes for long-term EEG measurement, IEEE Transactions on Biomedical Engineering, Vol.58, No.5, pp.1200-1207, 2011
    34. L.F. Wang, J.Q. Liu, X.X. Yan, B. Yang, C.S. Yang, A MEMS-based Pyramid Micro-needle Electrode for Long-term EEG Measurement, Microsyst Technol, pp.269-276, 2013
    35. W. Zhou, R. Song, X. Pan, Y. Peng, X. Qi, J. Peng, K. Hui, K. Hui, Fabrication and impedance measurement of novel metal drybioelectrode , W. Zhou et al. / Sensors and Actuators A201, pp.127-133, 2013
    36. J.C. Chiou, L.W. Ko, C.T. Lin, T.P. Jung, S.F. Liang, J.L. Jeng, and C.T. Hong, Using Novel MEMS EEG Sensors in Detecting Drowsiness Application, IEEE Biomedical Circuits and Systems Conference (BioCAS 2006), London, England, Nov. 29-Dec. 1, 2006
    37. T. Kobayashi, M. Motoyama, H. Masuda , Y. Ohta, M. Haruta, T. Noda, K. Sasagawa, T. Tokuda, H. Tamura, Y. Ishikawa, S. Shiosaka, J. Ohta, Novel implantable imaging system for enabling simultaneous multiplanar and multipoint analysis for fluorescence potentiometry in the visual cortex, Biosensors and Bioelectronics 38, pp.321-330, 2012
    38. T.C. Ferree, P. Luu, G.S. Russell, D.M. Tucker, Scalp electrode impedance, infection risk, and EEG data quality, Clinical Neurophysiology, Vol.112, pp.536-544, 2001
    39. 曾柏翔, 應用於腦波研究之乾式電極開發, 國立臺灣師範大學機電工程學研究所學位論文 , pp. 19, 2006
    40. L.F. Wang, J.Q. Liu, X.X. Yan, B. Yang, C.S. Yang, A MEMS-based pyramid micro-needle electrode for long-term EEG measurement, Microsyst Technol, pp.269-276, 2013
    41. T. Fofonoff, S. Martel, C. Wiseman, R. Dye, I. Hunter, N. Hatsopoulos, and J. Donoghue, A highly flexible manufacturing technique for microelectrode array fabrication, Proceedings of the second joint EMBS/BMES conference, pp.23-26, 2002
    42. 胃食道逆流, 中道自然醫學(非藥物)細胞自癒療法專輯, 2013,
    http://www.ckwang.com.tw/n-gastro-303.html/
    43. T. Masuzawa, Fundamentals of micro-EDM technology are summarized and the state of the art of the technology is overviewed, Proceedings of the 13th international symposium for electro-machining ISEM XIII, Vol1, pp.3-15, 2001
    44. C. Sommer, Non-traditional machining handbook, Advance Publishing, Inc., pp.117-124, 2000
    45. 吳育儒, 含硼聚晶鑽石輪刀開發與繞射階梯光柵模仁製作研究, 國立臺灣師範大學機電工程學研究所學位論文, pp.19, 2012
    46. 蕭瑞陽, 放電加工原理與應用-精微雕模放電加工,
    http://esha- re.stut.edu.tw/EshareFile/2010_4/2010_4_e1e12437.ppt/
    47. 機械技術雜誌編輯部, 二十一世紀的顯學微機電系統(四)-微放電精密加工, 機械技術雜誌, pp.220-222, 2000
    48. C. Saito, The construction and 100% operational skills of EDM (in Japanese), Mitsubishi Electric Ltd, pp.40-69, 1979
    49. 日本Sodick株式會社, http://www.sodick.co.jp/
    50. Sodick, NC放電加工機AP1L 加工篇, 使用說明書, Ver2.0, 2010
    51. 蕭瑞陽, 放電加工原理與應用-精微線切割放電加工, http://esha- re.stut.edu.tw/EshareFile/2010_4/2010_4_e1e12437.ppt/
    52. 黃瑋平, 低成本高剛性微型工具機開發與高精度陣列光學微模具製作研究, 國立臺灣師範大學機電工程學研究所學位論文, pp.33, 2011
    53. 呂政峯編, 電鍍學, 世一書局, pp.10, 民82
    54. 蘇癸陽編, 實用電鍍理論與實際, 復文出版社, pp. 96-98, 民88
    55. 葉明桀, 懸臂式微型糖研工具開發與應用, 國立臺灣師範大學機電工程學研究所學位論文, pp.7-10, 2009
    56. 台灣維新影子政府, 陳教授的部落格-從神經醫學到社會參與, 2009, http://www.shadowgov.tw/
    57. 探索腦部及脊髓, 2004, http://www.dls.ym.edu.tw/neuroscience/
    58. W. F. Ganong, Review of medical physiology 10th ed, Lange Medical Publications, 1981
    59. 曾柏翔, 應用於腦波研究之乾式電極開發, 國立臺灣師範大學機電工程學研究所學位論文, pp. 9, 2006
    60. N. Schaul, The fundamental neural mechanisms of electroenc- ephalography, Electroencephalography and clinical Neurophysiology, Vol. 106, pp.101-107, 1998
    61. T. Togawa, T. Tamura, P. A. Oberg, Biomedical Transducers and Instruments, CRC Press LCC, 1997
    62. G.P. furtscheller, F.H. Lopes, Event-related EEG/MEG synchronization and desynchronization:basic principles, No.6 Clinical Neurophysiology, Vol. 110, pp.1842-2857, 1999
    63. 許世昌, 新編解剖生理學, 永大書局有限公司, 1999
    64. 臺灣機械工業同業公會, 放電加工技術趨勢與分析, 2014,
    http://www.tami.org.tw/
    65. Sodick, NC放電加工機AP1L premium, 使用說明書, Ver3.0, 2008
    66. 慶鴻機電工業股份有限公司, CNC線切割放電加工機, 線切割機保養手冊, B1 edition, 2008
    67. 台中精機, 立式綜合加工機, http://www.or.com.tw/
    68. 工具顯微鏡, 漢磊股份有限公司, http://www.aixon.com.tw/
    69. 掃描式電子顯微鏡, JEOL- Scanning Electron Microscopes,
    http://www.jeol.com/Default.aspx?tabid=36
    70. 3D雷射共軛焦顯微鏡, OLYMPUS,
    http://www.olympus-ims.com/en/metrology/ols4000/
    71. TrueSense Exploration Kit 說明書,
    http://www.op-innovations.com/zh-hant/TSKdesc
    72. Y. Wang, F. Zhao, J. Wang, Wear-resist Electrodes for Micro-EDM, Chinese Journal of Aeronautics, Vol.22, pp.339-342, 2009
    73. H. J. Scussel, Friction and wear of cemented carbides, ASM handbook, Vol.18, ASM Int., pp.795, 1992
    74. 金通用銅材股份有限公司:http://www.cu-alloy.com.tw
    75. 元祥金屬工業股份有限公司:http://www.yhm.com.tw
    76. 王大倫, 實用電鍍學(譯), 徐氏文教基金會出版, pp.259, 1993
    77. G. Rizzoni, Principle and application of electrical engineering, The McGraw-Hill Companies, Inc, 2nd edition, 1996
    78. Hassan Abdel-Gawad El-Hofy, Fundamentals of machining processes: conventional and nonconventional processes, 2nd edition, pp.393, 2013
    79. 張渭川(譯), 放電加工的結構與實用技術, 全華科技圖書股份有限公司, 1996
    80. 齋藤長男, 放電加工のしくみと100%活用法, 三菱電機(株), pp.40-67, 1979
    81. L.F. Wang, J.Q. Liu, X.X. Yan, B. Yang, C.S. Yang, A MEMS-based pyramid micro-needle electrode for long-term EEG measurement, Microsyst Technol, pp.269-276, 2013
    82. Overview of materials for brass, MatWeb, http://www.matweb.com
    83. 葉明桀, 懸臂式微型糖研工具開發與應用, 國立臺灣師範大學機電工程學研究所學位論文, pp.7-10, 2009
    84. 王大倫, 實用電鍍學(譯), 徐氏文教基金會出版, pp.270, 1993
    85. A.N. Annaidh, M. Ottenio, K. Bruyere, M. Destrade, M.D. Gilchrist, Mechanical properties of excised human skin, 6th World Congress of Biomechanics(WCB), Vol.31, pp.1000-1003, 2010

    下載圖示
    QR CODE