簡易檢索 / 詳目顯示

研究生: 李偉誠
Li, Wei-Cheng
論文名稱: 非彈性應變回復法評估花蓮和平地區及彰濱工業區之現地應力場
In-situ stress assessment of anelastic strain recovery in Hualien Heping area and Chang Hua Coastal Industrial Park, Taiwan
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 228
中文關鍵詞: 花蓮和平彰濱工業區非彈性應變回復法現地應力
英文關鍵詞: Hualien Heping, Chang Hua Coastal Industrial Park, anelastic strain recovery, in-situ stress
論文種類: 學術論文
相關次數: 點閱:86下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現地應力場為地質科學與大地工程之重要資訊,對於地下結構物的設計、天然資源的開發與廢棄物的地下儲藏皆扮演重要的角色。現地應力場( in-situ stress )是由地質營力與重力場長期交互影響累積的結果。而影響現地應力的因素有很多,目前對於現地應力的成因尚無詳細完整的理論基礎,而實際量測現地應力為不失為有效的解決辦法。
    台灣島為歐亞板塊和菲律賓海板塊碰撞聚合作用的造山帶,是板塊運動活躍的活動構造區。花蓮和平地區位於台灣東北部的脊樑山脈,正好處於菲律賓海板塊與歐亞大陸板塊隱沒反轉的轉折帶上,造山演化史複雜。台灣西部彰化縣濱海工業區的崙尾區則是屬於填海造陸區域,地下的地層以西部麓山帶的地層為主,地層由淺至深分別為:頭嵙山層、卓蘭層、錦水頁岩、桂竹林層、觀音山砂岩、打鹿頁岩和北寮層。
    本研究使用花蓮和平地區的變質花崗岩及彰濱工業區沉積岩不同深度的岩芯以應力釋放產生的非彈性應變回復來評估這兩地區三維現地應力場隨深度的變化。實驗結果顯示這兩處的應力場皆是正斷層應力場,拉張方向大致是南北向拉張為主。和平地區的最大、次大與最小主應力以及軸差應力的應力梯度分別為26MPa/km、22MPa/km與19MPa/km,其回歸係數皆達0.9以上,其軸差應力梯度約為7MPa/km,至於彰濱工業區最大、次大與最小主應力的梯度分別為22MPa/km、18MPa/km與17MPa/km,其回歸係數皆達0.8以上,其軸差應力梯度約為5MPa/km。另外,利用ASR結果推導出側向應力係數與應力比值的經驗公式可用來評估實驗場址及其附近的應力場。同時藉由彰濱ASR量測結果與岩石力學資料可進一步推估造成岩體破裂時的最大孔隙水壓,以及二氧化碳的最大灌注壓力。
    本研究的成果可以探討ASR技術於台灣現地應力量測的可能性與前瞻性,並期望未來重要深井工程與基礎工程能以鑽孔岩芯進行非彈性應變回復實驗來評估應力場資訊,提供學術界與工程界參考與使用。

    In-situ stress is an essential information for geological science and geotechnical engineering and plays an important role for the design of underground structures, natural resource exploration and underground storage of waste. In-situ stress is long-term interaction result among geological processes and the gravitational field. Although many factors can affect in-situ stress, so far the origin(s) of in-situ stress is not theoretically established yet. The measurement of in-situ stress can be a practically good solution.
    Taiwan is an orogenic belt of oblique collision between the Eurasian Plate and the Philippine Sea Plate, known as a mobile tectonic region. Heping of Hualien is located in the northeastern part of the Backbone Range, where the reversal of the Philippine Sea Plate subduction polarity take place and structural history is complex. The Chang-Hua Coastal Industrial Park is a part of land reclamation area in the western Taiwan. Underground formations from shallow to deep similar to that of the Western Foothills are consisted of the Toukoshan formation, Cholan formation, Chinshui shale, Kueichulin formation, Guanyinshang formation, Talu shale and Peliao formation.
    In this study, we used retrieved cores with different depths from meta-granite in the Hualien Heping and sedimentary rock in the Chang-Hua Coastal Industrial Park to evaluate the variation of three-dimensional in-situ stress with depth via anelastic strain recovery (ASR) method. Results show that the stress field is normal faulting with N-S extension in both places. In Hualien Heping, the maximum, intermedium and minimum principal stress gradient is 26MPa/km, 22MPa/km, and 19MPa/km, respectively. Their regression coefficients are all larger than 0.9. The gradient of differential stress is 7MPa/km. In the Chang-Hua Coastal Industrial Park, the maximum, intermedium and minimum principal stress gradient is 22MPa/km, 18MPa/km and 17MPa/km, respectively. The regression coefficients are over 0.8. The gradient of differential stress is 5 MPa/km. In addition, empirical equations of lateral stress coefficients and stress ratio deduced from ASR results can used to characterize the site aspects and evaluate the stress field nearby. Combining ASR results with rock mechanic data in the Chang-Hua Coastal Industrial Park can further estimate the maximum fluid pressure and the maximum injection pressure of carbon dioxide for rock fracturing.
    Results of this study can be used to evaluate the application and feasibility of ASR in Taiwan. Hopefully, the assessment of in-situ stress via ASR on retrieved cores from borehole and foundation engineering can provide information for academic and engineering reference and utility.

    目錄 摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究大綱 2 1.4 文獻回顧 5 1.4.1 GPS 5 1.4.2震源機制 6 1.4.3 音射法 7 1.4.4 井孔崩落 8 1.4.5側向應力與應力比值 13 第二章 研究區域 15 2.1 地體架構介紹 15 2.2 地質背景 17 2.2.1 花蓮和平 18 2.2.2 彰濱工業區崙尾區 22 第三章 研究方法 29 3.1 ASR方法介紹 29 3.2 ASR試驗原理 31 3.3 實驗儀器介紹 33 3.4 實驗流程 41 3.5 樣本製作 45 3.6 岩芯定向 50 第四章 實驗結果 51 4.1 花蓮和平 51 4.1.1 岩芯定向 51 4.1.2 分析結果 52 4.1.3 應力方向與應力型態 57 4.1.4 應力規模 61 4.2 彰濱工業區之應力分析結果 63 4.2.1 岩芯定向 63 4.2.2 分析結果 66 4.2.3 應力方向與應力型態 70 4.2.4 應力場規模 73 第五章 討論 77 5.1 討論影響ASR應力分析的因素 78 5.2 討論不同深度樣本間非彈性應變回復量之異同 79 5.3 利用ASR結果討論和平地區的應力場型態並與其他結果比較 80 5.4 計算應力規模梯度並討論地體構造的意義 83 5.5 討論ASR應力資料對土木大地工程的應用 85 5.6探討彰濱地區ASR應力場與其他結果之異同 90 5.7討論彰濱地區不同深度樣本間非彈性應變回復量之異同 92 5.8計算彰濱地區應力規模梯度並且討論地體構造之意義 93 5.9 利用ASR量測結果計算彰濱地區的灌注壓 94 5.10討論彰濱工業區ASR應力資料對土木大地工程的應用 97 第六章 結論與建議 101 6.1 結論 101 6.2 建議 103 參考文獻 105 附錄(一) 碩士學位考試口試委員提問與回覆對照表 111 附錄(二) 115   圖目錄 圖 1.1 研究流程圖。 4 圖 1.2 臺灣地區水平應變速率及面膨脹率分佈圖 5 圖 1.3 台灣東北部區域震源機制之應力場分佈圖 6 圖 1.4 近場地震網網內地震之震源機制。 7 圖 1.5 彰濱井場四臂井徑儀與FMI判釋水平最大應力方位隨深度之變化。 10 圖 1.6 密度電測隨深度分布圖及鉛直應力隨深度分布圖。 11 圖 1.7 岩心之單軸抗壓強度C0隨深度之分佈。 11 圖 1.8 頁岩之單軸抗壓強度(C0)隨深度分佈圖。 12 圖 1.9 彰濱地區推估之現地應力場。 12 圖 2.1 台灣板塊構造示意圖。 16 圖 2.2 台灣地質圖。 17 圖 2.3 和平地區地質圖。 19 圖 2.4 淺部岩心。 20 圖2.5 深部岩心。 20 圖 2.6 和平井場相片。 21 圖 2.7 和平井場井架照片。 21 圖 2.8 彰濱井場位置圖。 26 圖 2.9 彰濱現地相片。 27 圖 2.10 彰濱現地井架相片。 27 圖 3.1 應力與應變回復示意圖。 30 圖 3.2 應力與應變關係圖。 30 圖 3.3 花蓮和平井場設備圖。 33 圖 3.4 彰濱井場設備圖。 34 圖 3.5 實驗器材。 34 圖 3.6 資料擷取器。 35 圖 3.7 恆溫水循環系統。 36 圖 3.8 不斷電系統。 37 圖 3.9 恆溫水槽。 38 圖 3.10 單軸應變規。 39 圖 3.11 雙軸應變規。 39 圖 3.12 白金電阻測溫棒。 40 圖 3.13 非彈性應變回復法之三軸主應力計算流程圖。 41 圖 3.14 非彈性應變回復法實驗流程。 45 圖 3.15 岩芯紅藍參考線圖。 46 圖 3.16 岩芯ASR參考線示意圖。 47 圖 3.17 岩芯黏貼應變規示意圖。 48 圖 3.18 實驗樣本放入水箱。 49 圖 3.19 應變規接上資料擷取器。 49 圖 4.1 和平岩芯方向校正圖。 52 圖 4.2 樣本8 ASR 18個應變計資料。 55 圖 4.3 和平樣本8 9個方向ASR應變計資料。 55 圖 4.4 和平樣本8最大、次大、最小與平均主應變值隨時間變化的結果。 56 圖 4.5 和平ASR樣本8非彈性主偏差應變比值圖。 56 圖 4.6 和平ASR樣本8非彈性主應變方向投影圖。 57 圖 4.7 ASR應變主軸之下半球投影圖。 58 圖 4.8 水平最大應力方向對樣本深度作圖。 59 圖 4.9 最大主應力傾沒角隨深度的變化。 60 圖 4.10 和平地區三軸主應力規模隨深度之變化。 61 圖 4.11 樣本6階段去磁的翟氏分量圖。 64 圖 4.12 樣本6移除二次磁場後的翟氏分量圖。 64 圖 4.13 校正過後的彰濱ASR應變主軸下半球投影圖。 65 圖 4.14 彰濱樣本6 ASR 18個應變計數據、水溫的時間數據。 67 圖 4.15 彰濱樣本6的9個方向18個ASR應變計資料。 68 圖 4.16 彰濱樣本6最大、次大、最小與平均主應變值隨時間變化的結果。 68 圖 4.17 彰濱ASR樣本6非彈性主偏差應變比值圖。 69 圖 4.18 彰濱ASR樣本6非彈性主應變方向投影圖。 69 圖 4.19 ASR應變主軸之下半球投影圖。 71 圖4.20 水平最大應力方向隨深度之分布圖。 72 圖 4.21 彰濱定向樣本之最大主應力傾向隨深度之變化。 72 圖 4.22 彰濱地區三軸主應力規模隨深度之變化。 75 圖 5.1 非彈性主應變回復量之變化。 79 圖 5.2 安德森斷層理論之正斷層應力場示意圖。 80 圖 5.3 ASR和AE三軸應力之比較。 81 圖 5.4 ASR和AE推估水平最大應力方向之比較。 82 圖 5.5 ASR和AE推估σv傾沒角之比較。 83 圖 5.6 和平應力場不連續示意圖。 85 圖 5.7 和平應力場連續示意圖。 85 圖 5.8 和平地區k隨深度之變化。 86 圖 5.9 和平地區kH隨深度之變化。 87 圖 5.10 和平地區kh隨深度之變化。 87 圖 5.11 和平地區ψ隨深度之變化。 88 圖 5.12 鉛直應力與側向應力比值之分佈。 89 圖 5.13 ASR和電測水平最大方向之比較。 91 圖 5.14 井壁破裂與ASR水平最大應力方向之比較。 91 圖 5.15 彰濱地區非彈性主應變回復量之變化。 93 圖 5.16 凝聚力隨深度變化趨勢圖。 95 圖 5.17 摩擦角隨深度變化趨勢圖。 95 圖 5.18 灌注壓隨深度變化趨勢圖。 96 圖 5.19 彰濱地區k隨深度之變化。 97 圖 5.20 彰濱地區kH隨深度之變化。 98 圖 5.21 彰濱地區kh隨深度之變化。 99 圖 5.22 彰濱地區ψ隨深度之變化。 100   表目錄 表 1.1 水力破裂量測結果。 13 表 2.1 彰濱地區鑽井地層層位表。 25 表 4.1 和平地區取樣明細表。 62 表 4.2 樣本古地磁資料磁偏角與岩芯藍色參考線之方位角。 66 表 4.3彰濱地區取樣明細表。 74

    參考文獻
    1. Amadei, B. and O. Stephansson (1997), “Rock Stress andits Measurement”, Chapman & Hall, 490p.
    2. Anderson, E. M. (1951), The Dynmamics of Faulting,Edinburgh, Oliver and Boyd.
    3. Angelier, J. (1986). Perface. Geodynamics of the Eurasia-Philippine Sea plate boundary. Spec. Issue. Tectonophysics 125, IX-X.
    4. Barrier, E. and J. Angelier (1986), Active collision in eastern Taiwan: the Coastal Range,Tectonophysics,125, 39-72.
    5. Beyssac, O., M. Simoes, J. P. Avouac, K. A. Farley, Y. G.Chen, Y.C. Chan, and B. Goffe´ (2007), ”LateCenozoic metamorphic evolution and exhumation of Taiwan, Tectonics, 26, TC6001, doi : 10.1029/ 2006 TC002064.
    6. Biq, C. (1972), Dual trench structure in the Taiwan-Lusonregion, Proc. Geol. Soc. China,15, 65-75.
    7. Bowin, C., R. S. Lu, and C. S. Lee (1978), Plate convergence and accretion in Taiwan-Luzon region, AAPG Bulletin, 62, 1645-1672.
    8. Brady BHG, Brown ET (2004) Rock mechanics:for underground mining.Kluwer Academic Publishers,Dordrecht
    9. Brown and Hoek (1978),Trend in relationships between measured in situ stress and depth.Int J Rock Mech Min Sci Geomech Abstr 15:211-215
    10. Chai, H. T. (1972), Structure and tectonic evolution of Taiwan, Amer. Jour. Sci., 272, 389-422.
    11. Chen, C. H. and C. H. Wang (1995), “Explanatory notes for the metamorphic facies map of Taiwan ”, 51pp., 2nded., Centr. Geol. Surv. Spec. Publ. 2, MOEA., Taiwan,R.O.C..
    12. Chi, W. C, and D. Reed (2007), “Evolution of shallow crustal thermal structure from subduction to collision: An example from Taiwan ”, Geological Society of America Bulletin.
    13. Chow, J., Chen,H.M., Chang,T.Y., Kuo C.L and Tsai, S.F. (1991) Preliminary Study on hydrocarbon plays around Nanjihtao Basin, Taiwan Strait. Pertol.Geol.Taiwan ,26, 45-46
    14. Clark, M. B., D. M. Fisher, and C. Y. Lu (1992), Strain variation in the Eocene and older rocks exposed along the central and southern Cross-Island Highways, Taiwan, Acta Geologica Taiwanica, 30, 1-10.
    15. Engelder, T. (1993), “ Stress Regimes in the Lithosphere ”, Princeton University Press, 457p.

    16. Faure, M., C. Y. Lu, and H. T. Chu (1991), “Ductile deformation and Miocene nappe- stacking in Taiwan relation to motion of the Philippine Sea Plate ”, Tectonophysics, 198, 95-105.
    17. Hayes, D.E. and Lewis, S.D. (1984) A geophysical study of the Manila Trench,
    Luzon, Philippines: 1.Crustal structure, gravity, and regional tectonic evolution.
    J. Geophys. Res., 89, 9171-9195.
    18. Ho,C.S. (1986), “A synthesis of the geologic evolution of Taiwan”, Tectonophysics, 125, 1-16.
    19. Ho, C. S. (1988), “An Introduction to the Geology of Taiwan—Explanatory Text of the Geologic Map of Taiwan ”, 163pp. 2nd ed. Centr. Geol. Surv., MOEA.,
    Taipei, Taiwan, R.O.C..
    20. Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18. doi: DOI 10.1016/j.tecto.2008.11.016
    21. Huang, T.-C. (1976) Neogene calcareous nannoplankton biostratigraphy viewed from the Chuhuangkeng section, northwestern Taiwan. Proceedings of the Geological Society of China, 19, 7-24.
    22. Huang, C.Y. and Yin, Y.C. (1990) Bathymetric ridges and troughs in the active
    arc-continent collision region off southeastern Taiwan. Proc. Geol. Soc. China,
    33, 351-372.
    23. Huang, C. Y. , P. B. Yuan and S. J. Tsao (2006), “ Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis ”, Geological Society of America Bulletin, 118(3), 274-288.
    24. Huang Hsin-Hua,J. Bruce H. Shyu, Yih-Min Wu, Chien-Hsin Chang,and Yue-Gau Chen(2012) “Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension”,,
    25. Kao, H., Huang, G.C. and Liu, C.S. (2000) Transition from oblique subduction to
    collision in the northern Luzon arc-Taiwan region: Constraints from bathymetry
    and seismic observation. Jour. Geophys. Res., 105, 3059-3079.
    26. Lin, W., Kwasniewski M., Imamura T., Matsuki K. (2006),Determination of three-dimensional in stresses from anelastic strain recovery measurement of cores atgreat depth, Tectonophysics, 426, 221-238.
    27. Lin, W., E. C. Yeh, H. Ito, T. Hirono, W. Soh, C. Y. Wang, K.F. Ma, J. H. Hung and S. R. Song (2007),“Preliminary results of stress measurement by using drill cores of TCDP hole-A: an application of anelastic strain recovery method to threedimensionalin-situ stress determination” . Terr.Atmos. Ocean. Sci. 18. Doi :10.3319/ TAO. 007. 18. 2.379.
    28. Lee, C. R., Cheng, W. T. (1986), Preliminary heat flow measurements in Taiwan: presented at the Fouth Circum-Pacific Energy and Mineral Resources Conference, Singapore.
    29. Lu, C. Y., and J. Malavieille (1994), “Oblique convergence, indentation and rotation tectonics in the Taiwan Mountain Belt: Insights from experimental modeling”, Earth Planet. Sci. Lett., 121, 477-494.
    30. Lin, A.T., Watts, A.B. and Hesselbo, S.P. (2003) Cenozoic stratigraphy and
    subsidence history of the South China Sea margin in the Taiwan region. Basin
    Res., 15, 453-478.
    31. Lin, W., E. C. Yeh, H. Ito, T. Hirono, W. Soh, C. Y. Wang, K.F. Ma, J. H. Hung and S. R. Song (2007),“Preliminary results of stress measurement by using drill cores of TCDP hole-A: an application of anelastic strain recovery method to threedimensional in-situ stress determination” . Terr. Atmos. Ocean. Sci. 18. Doi :10.3319/ TAO. 007. 18. 2.379.
    32. Liu, C.S., Huang, I.L. and Teng, L.S. (1997) Structural features off southwestern
    Taiwan. Mar. Geol., 137, 3O5-319
    33. Lundberg, N., D.L. Reed, C. -S. Liu, and J. Lieske Jr. (1997) Frearc-basin closure and arc accretion in the submarine suture zone south of Taiwan. Tectonophys,
    274, 5-24﹒
    34. Matsuki, K. (1991). Three-dimentional In-situ stress measurement with anelastic starin recovery of a rock core. International congress on Rock Mechanics, 1,557-560.
    35. Matsuki, K., and K. Takeuchi (1993), “Three-dimensional in-situ stress determination by anelastic strain recovery of a rock core ”, Int. J. Rock Mech. Min. Sci.& Geomech., 30, 1019-1022.
    36. Matsuki Koji(2007), “Anelastic strain recovery compliance of rocks and its application to in situ stress measurement”, Department of Environmental Studies, Graduate School of Environmental Studies, Tohoku University,
    37. Matsuki, K. (2008). Anelastic strain recovery compliance of rocks and its application to in situ stress measurement. International Journal of Rock Mechanics and Mining Sciences, 45(6), 952-965. doi: DOI 10.1016/j.ijrmms.2007.10.005
    38. Rau, R. J., K. E. Ching, J. C. Hu, and J. C. Lee (2008),“Crustal deformation and block kinematics in transition from collision to subduction: Global positioning system measurements in northern Taiwan”, 1995-2005, J. Geophys. Res., 113, B09404, doi : 10.1029 / 2007 JB005414
    39. Reed, D.L., Lundberg, N. Liu, C.S. and Kuo, B.Y. (1992) Structural relations along the margins of the offshore Taiwan accrectionary wedge: lmplication for
    accretion and crustal kinematics. Acta Geol. Taiwan., 30, 105-122.
    40. Sella, G. F., T. H. Dixon, and A. Mao (2002), REVEL: A model for recent plate velocities from space geodesy, J. Geophys. Res., 107, 30 PP.
    41. Seno, T., S. Stein, and A. E. Gripp (1993), A model for the motionof the Philippine Sea plate consistent with NUVEL-1 and geological data, J. Geophy. Res., 98,17941-17948.
    42. Stanley, R. S., L. B. Hill, H. C. Chang, and H. N. Hu (1981),A transect through the metamorphic core of the Central Mountains, Southern Taiwan, Mem. Geol. Soc. China, 4, 443-473.
    43. Stephansson, O. and A. Zang(2010)., "How to generate the Final Rock Stress Model (FRSM) at a site or an area, " Rock Stress and Earthquakes,
    44. Stephansson, O (1993) , "Rock stress in the Fennoscandian shield, " In J.A.Hudson(ed) Comprehensive Rock Engineering, Vol3,pp.445-459
    45. Suppe, J. (1981), “Mechanics of mountain building and metamorphism in Taiwan ”, Mem. Geol. Soc. China, 4,67-89.
    46. Suppe, J. (1984), “Kinematics of arc-continent collision,flipping of subduction, and back-arc spreading near Taiwan”, Mem. Geol. Soc. China, 6, 21-33.
    47. Teng, L.S. (1990), Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics,183, 57-76.
    48. Teng, L. S., C. T. Lee, Y. B. Tsai, and L.-Y. Hsiao (2000),“Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan”, Geology (Boulder),
    28(2), 155-158.
    49. Tsai, Y.B. (1986) Seismotectonics of Taiwan. Teconophys., 125, 17-37.
    50. Tsao, S., T. C. Li, J. L. Tien, C. H. Chen, T. K. Liu and C. H.Chen (1993), “Illite crystallinity and fission-track ages along the east Central Cross-Island Highway of Taiwan”, Acta Geol. Taiwan., 30, 65-94.
    51. Tsao, S., E. Law, H. C. Ho, Y. H. Lee, W. T. Jiang and C.H.Chen (1998), “The geology significances of K-Ar ages of metapellites from the Central Range”, Taiwan,Bull. Central Geol. Survey, 11, 37-84.
    52. Voight. (1968). Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial anelastic strain tensor in drill cores. Rock Mechanics and Engineering geology, 6/4, 201-215.
    53. Yabe, Y. K. Yamamoto, N. SATO, K. OMURA, (2010)"Comparison of stress state around the Atera fault, central Japan, estimated using boring core samples and by improved hydraulic fracture tests,"Earth, Planets and Space, vol. 62, 2010, pp. 257–268.

    54. Yamamoto, Y, W. Lin, H. Oda, T. Byrne, and Y. Yamamoto, (2013). Stress states at the subduction input site, Nankai Subduction Zone, using anelastic strain recovery (ASR) data in the basement basalt and overlying sediments. Tectonophys., 600, 91-98. dx.doi.org/10.1016/j.tecto.2013.01.028
    55. Yang, T.F., Lee, T., Chen, C.H., Cheng, S.N., Knittel, U., Punongbayan, R.S. and
    Rasdas, A. R. (1996) A double island arc between Taiwan and Luzon:consequence of ridge subduction. Teconophys., 258, 85-101.
    56. Yeh.E .C(2004),“Structural evolution of slate belts:examples from taiwan and Eastern Pennsylvania. ”187
    57. Yen, T. P. (1963), “The metamorphic belts within the Tananao schist terrain of Taiwan”, Proceedings of the Geological Society of China, 6, 72-74.
    58. Yen, T. P. (1967), “Structural Analysis of Tananao Schist of Taiwan”, Bull. Geol. Surv. Taiwan, 21, 1-51.
    59. Yu, S. B., H. Y. Chen, and L.C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics,274, 41-59.
    60. Yui, T. F. (2005), “Isotopic composition of carbonaceous material in metamorphic roks from the mountain belt of Taiwan”, Int. Geol. Rev., 47, 610-625.
    61. Zoback M. L., M. D. Zoback, J. Adams, M. Assumpcão, S. Bell, E. A. Bergman, P. Blüemling, N. R. Brereton, D. Denham, J. Ding, K. Fuchs, N. Gay, S. Gregersen, H. K. Gupta, A. Gvishiani, K. Jacob, R. Klein, P. Knoll, M. Magee, J. L. Mercier, B. C. Müeller, C. Paquin, K. Rajendran, O. Stephansson, G. Suarez, M. Suter, A. Udias, Z. H. Xu, M. Zhizin (1989), "Global patterns of tectonic stress, " Nature, vol. 341, pp. 291-298.
    62. Zoback, M. D. (2007), Reservoir Geomechanics, Cambridge university press, New York,.
    63. 王順民 (2006) 台灣車籠埔斷層鑽井計畫岩心的岩性地層及沈積相研究。國立中央大學地球物理研究所碩士論文,共91頁。
    64. 台灣電力公司 (2014),二氧化碳地質封存先導試驗場址地質調查及技術 研發(一) 期末報告初稿,共538頁。
    65. 江紹平 (2007),台灣中部早期前陸盆地的地層紀錄。國立中央大學地球物理研究所碩士論文,共87頁。
    66. 安藤昌三郎 (1930),台灣苗栗油田之地質與構造,地質學雜誌,第37卷,第447期,第799-803頁。
    67. 何春蓀 (1986) 台灣地質概論—台灣地質圖說明書,第二版,經濟部中央地質調查所,共 164 頁。
    68. 林朝棨 (1935),台中豐原地方第三紀及第四紀地層之研究。台北帝國大學理農學部紀要,第13卷,第3期,第13-30頁。
    69. 林朝棨 (1954),台灣之地質:台灣新誌,中國文化事業出版委員會。
    70. 孫天祥 (2014) 臺灣宜蘭清水地熱區之應力狀態研究」國立臺灣師範大學地球科學研究所碩士論文,共66頁。
    71. 陳振華 (1993),由晚期新生代沉積物之岩象學與構造地質學研究探討臺灣中西部褶皺逆衝帶之演化。國立臺灣大學地質學研究所博士論文,共147頁。
    72. 陳培源 (2006),台灣地質,台灣省應用地質技師公會,共526 頁。
    73. 馬路灣 (2012),1/25000台灣全覽百科地圖集2,戶外生活圖書股份有限公司,共463頁。
    74. 鳥居敬造、吉田要 (1931),新竹州苗栗油田地質圖,臺灣總督府殖產局縮尺三萬分之一地質圖及說明書。
    75. 鳥居敬造 (1935),東勢圖幅及說明書。台灣總督府殖產局,第732號。
    76. 張麗旭、何春蓀 (1948),台中縣之大安背斜,地質評論,第13卷,第1至2期。
    77. 張麗旭 (1959),台灣西部中新世地層之基於小型有孔蟲之生物地層學研究。中國地質學會會刊,第二號,第41-42頁。
    78. 黃信樺 (2007),「臺灣東北地區的地震構造:由碰撞末期轉變為隱沒拉張之構造特性」,國立台灣大學地質研究所碩士論文。110頁。
    79. 楊志成 (1997),台灣中部地區錦水頁岩、卓蘭層與頭嵙山層的沉積環境研究。國立台灣大學地質學研究所碩士論文,共86頁。
    80. 葉恩肇、李偉誠、孫天祥、林為人、林蔚、林鎮國、陳文山 (2012),花蓮和平地區非彈性應變回復法之現地力量測,地工技術131 期,第 23 -34 頁。
    81. 鄧屬予 (2007),臺灣第四紀大地構造,經濟部中央地質調查所特刊第十八號,第1-24頁 。
    82. 焦中輝 (1991),「台灣東部和平地區之地質構造及其演化」,國立台灣大學地質學研究所碩士論文。
    83. 潘紹勇 (2013)利用岩芯室內試驗推求 利用岩芯室內試驗推求 利用岩芯室內試驗推求變質 花崗岩場址現地應力之探討 花崗岩場址現地應力之探討,國立台北科技大學,共113頁。
    84. 劉建麟 (2014),「利用電測資料推估台灣彰濱地區鑽井場址的地下應力場」,國立 中央大學應用地質研究所碩士論文。
    85. 蕭富元、張玉粦、曾慶恩和蔡政憲 (2006),套鑽法現地應力量測技術於台灣之應用,岩盤工程研討會論文集。
    86. 羅偉、何恭睿 (2012),台灣中央山脈東翼地質區和平溪以南的地質調查與地質特性,地工技術131 期,第15-22頁

    下載圖示
    QR CODE