研究生: |
賴正倫 Cheng Lun Lai |
---|---|
論文名稱: |
以區域生長與形態學方式來估計大鼠聲門面積之研究 Estimating rat glottal area by region growing and morphology |
指導教授: |
吳順德
Wu, Shuen-De |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 聲門 、區域生長 、形態學 |
英文關鍵詞: | Glottal area, Region-growing, Morphology |
論文種類: | 學術論文 |
相關次數: | 點閱:176 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聲門動態變化在喉生理學研究不論是在人類聲門或動物聲門上都是相
當重要的課題。本研究是採用大鼠聲門來進行研究,且以往有關大鼠聲門文獻在研究方法上都有計算速度太慢或準確性不足的缺點,故本研究提出一影像處理方法來改善上述缺點。其中,影像處理方法來計算聲門面積可分為以下三個處理步驟:
擷取紅色(R)成分影像。
利用區域生長(Region-Growing)來界定對象或聲帶的開放區域,並獲得該地區的聲門。
應用形態學(Morphology)來刪除孤立對象的區域。
實驗證明,擷取R成分影像後,經由區域生長能夠有效的分割出大鼠聲門區域,接著運用形態學方式來去除雜訊及小的結構區域,使得準確地計算出大鼠聲門面積。最後在與Otsu's method及active-contour method做比較,並從實驗結果證明本研究方法在大鼠聲門影像分析上有較好的準確率並且能夠加快影像處理速度。
The dynamic change of glottal area is a critical subject in the filed of laryngeal physiology. However, efficient methods for estimating glottal area were discussed rarely in previous literatures. In this regards, a glottal area estimation method by combining region growing technique and morphology operator was proposed in this dissertation. The proposed approach involves three major process steps including
1. Extracting red color components from the target image;
2. Using region-growing to delineate the vocal fold opening region;
3. Applying a morphology operator to remove the isolated subject regions and to obtain the area of the glottis.
Several experimental results demonstrate both the accuracy and computational efficiency for the glottal area estimation can be greatly improved by using the proposed method.
[1]K. Z. Lee, D. D. Fuller, I. J. Lu, L. C. Ku, and J. C. Hwang, “Pulmonary C-fiber Receptor Activation Abolishes Uncoupled Facial Nerve Activity from Phrenic Bursting During Positive End-Expired Pressure in the Rat,” Journal of Applied Physiology, Vol. 104, pp. 119-129, 2008.
[2]K. Z. Lee, D. D. Fuller, L.C. Tung, I. J. Lu, L.C. Ku, and J. C. Hwang, “ Uncoupling of Upper Airway Motor Activity from Phrenic Bursting by Positive End-Expired Pressure in the Rat,” Journal of Applied Physiology, Vol. 102, pp.878-889, 2007.
[3]I. J. Lu, K. Z. Lee, and J. C. Hwang, “Capsaicin-Induced Activation of Pulmonary Vagal C Fibers Produces Reflex Laryngeal Closure in the Rat,” Journal of Applied Physiology, Vol. 101, pp. 1104-1112, 2006.
[4]I. J. Lu, K. Z. Lee, J. T. Lin, and J. C. Hwang, “Capsaicin Administration Inhibits the Abducent Branch but Excites the Thyroarytenoid Branch of the Recurrent Laryngeal Nerves in the Rat,” Journal of Applied Physiology, Vol. 98, pp.1646-1652, 2005.
[5]M. Ahmad, J. Dargaud, A Morin, and F. Cotton, “Dynamic MRI of Larynx and Vocal Fold Vibrations in Normal Phonation,” Journal of Voice, Vol. 23, pp. 235-239, 2007.
[6]A. Ladan and S. Z. Hamid, “Automatic Segmentation of Thalamus From Brain MRI Integrating Fuzzy Clustering and Dynamic Contours,” IEEE Transactions Biomedical Engineering, Vol. 51, pp. 800 - 811, 2004.
[7]A. Skalski, T. Zielinki, and D. Deliyski, “Analysis of Vocal Folds Movement in High Speed Videoendoscopy Based on Level Set Segmentation and Image Registration,” Signals and Electronic Systems,2008. ICSES '08. International Conference, pp. 223 - 226, 2008.
[8]Y. Yan, X. Chen, and D. Bless, “Automatic Tracing of Vocal-Fold Motion from High-Speed Digital Images,” IEEE Transactions Biomedical Engineering, Vol. 53, pp.1394 - 1400, 2006.
[9]S. Allin, J. Galeotti, G. Stetten, and S. H. Dailey, “Enhanced Snake Based Segmentation of Vocal Folds,” Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium , Vol. 1 , pp. 812 - 815 , 2004
[10]核磁共振設備
http://www.e79.com.cn/uploads/userup/0908/24095T25248.jpg
[11]J. Lohscheller, H. Toy, F. Rosanowski, U. Eysholdt, and D. Michael “Clinically Evaluated Procedure for the Reconstruction of Vocal Fold Vibrations from Endoscopic Digital High-Speed Videos,” Medical Image Analysis, Vol. 11, pp. 400-413, 2007.
[12]Wikipedia: public editor, “RGB Color Model,” available at: http://en.wikipedia.org/wiki/RGB.
[13]http://zh.wikipedia.org/zh-tw/File:HSV_cylinder.png
[14]D. Sen and S. K. Pal, “Gradient Histogram: Thresholding in a Region of Interest for Edge Detection,” Image and Vision Computing, Vol. 28, pp. 677-695, 2010.
[15]F. Arandiga, A. Cohen, R. Donat, and B. Matei, “Edge Detection Insensitive to Changes of Illumination in the Image,” Image and Vision Computing, Vol. 28, pp. 553-562, 2010.
[16]F. Russo and A. Lazzari, “Color Edge Detection in Presence of Gaussian Noise Using Nonlinear Prefiltering,” IEEE Transactions on Instrumentation and Measurement, Vol. 54, pp. 352 - 358, 2005.
[17]V. Torre and T. A. Poggio, “On Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, pp. 147 - 163, 1986.
[18]M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” International Journal of Computer Vision, Vol. 1, pp. 321-331, 1988.
[19]S. Krinidis and V. Chatzis, “Fuzzy Energy-Based Active Contours,” IEEE Transactions, Image Processing, Vol. 18, pp. 2747 - 2755, 2009.
[20]C. Darolti, A. Mertins, C. Bodensteiner, and U.G. Hofmann, “Local Region Descriptors for Active Contours Evolution,” IEEE Transaction on Image Processing, Vol. 17, pp. 2275 - 2288, 2008.
[21]O. Michailovich, Y. Rathi, and A. Tannenbaum, “Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow,” IEEE Transactions on Image Processing, Vol. 16, pp.2787 - 2801, 2007.
[22]H. Li and A. Yezzi, “Local or Global Minima: Flexible Dual-Front Active Contours,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, pp. 1 - 14, 2007.
[23]S. Chen, N. A. Sochen, and Y. Y. Zeevi , “Integrated Active Contours for Texture Segmentation,” IEEE Transactions on Image Processing, Vol. 15, pp.1633 - 1646, 2006.
[24]M. Niethammer, A. Tannenbaum, and S. Angenent , “Dynamic Active Contours for Visual tracking,” IEEE Transactions on Automatic Control, Vol. 51, pp. 562 - 579, 2006.
[25]K. J. Batenburg and J. Sijbers, “Optimal Threshold Selection for Tomogram Segmentation by Projection Distance Minimization,” IEEE Transactions on Medical Imaging, Vol. 28, pp. 676 - 686, 2009.
[26]S. C. Gustafson, C. S. Costello, E. C. Like, S. J. Pierce, and K. N. Shenoy, “Bayesian Threshold Estimation,” IEEE Transactions on Education, Vol. 52, pp. 400-403, 2009.
[27]S. Manay and A. Yezzi, “Anti-Geometric Diffusion for Adaptive Thresholding and Fast Segmentation,” IEEE Transactions on Image Processing, Vol. 12, pp. 1310 - 1323, 2003.
[28]N. Otsu, “A Threshold Selection Method from Gray-Level Histogram,”IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, pp. 62 - 66, 1979.
[29]J. Dehmeshki, X. Ye, H. Amin, and M. Valdivieso, “Segmentation of Pulmonary Nodules in Thoracic CT Scans: A Region Growing Approach,” IEEE Transaction on Medical Imaging, Vol. 7, pp. 467-480, 2008.
[30]Q. Yu and D. A. Clausi, “IRGS: Image Segmentation Using Edge Penalties and Region Growing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, pp. 2126 - 2139, 2008.
[31]Q. Yu and D. A. Clausi, “SAR Sea-Ice Image Analysis Based on Iterative Region Growing Using Semantics,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, pp. 3919-3931, 2008.
[32]R. Adams and L. Bischof, “Seeded Region Growing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.16, pp.641-647, 1994
[33]R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis Using Mathematical Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, pp. 532–550, 1987.
[34]R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB 2st Edition, 2004.
[35]台師大生命科學系黃基礎教授上課講義。